短板的潜在因素分析

Alain-Philippe Fortin, Patrick Gagliardini, Olivier Scaillet
{"title":"短板的潜在因素分析","authors":"Alain-Philippe Fortin, Patrick Gagliardini, Olivier Scaillet","doi":"arxiv-2306.14004","DOIUrl":null,"url":null,"abstract":"We develop inferential tools for latent factor analysis in short panels. The\npseudo maximum likelihood setting under a large cross-sectional dimension $n$\nand a fixed time series dimension $T$ relies on a diagonal $T \\times T$\ncovariance matrix of the errors without imposing sphericity or Gaussianity. We\noutline the asymptotic distributions of the latent factor and error covariance\nestimates as well as of an asymptotically uniformly most powerful invariant\n(AUMPI) test based on the likelihood ratio statistic for tests of the number of\nfactors. We derive the AUMPI characterization from inequalities ensuring the\nmonotone likelihood ratio property for positive definite quadratic forms in\nnormal variables. An empirical application to a large panel of monthly U.S.\nstock returns separates date after date systematic and idiosyncratic risks in\nshort subperiods of bear vs. bull market based on the selected number of\nfactors. We observe an uptrend in idiosyncratic volatility while the systematic\nrisk explains a large part of the cross-sectional total variance in bear\nmarkets but is not driven by a single factor. We also find that observed\nfactors, scaled or not, struggle spanning latent factors. Rank tests reveal\nthat observed factors struggle spanning latent factors with a discrepancy\nbetween the dimension of the two factor spaces decreasing over time.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent Factor Analysis in Short Panels\",\"authors\":\"Alain-Philippe Fortin, Patrick Gagliardini, Olivier Scaillet\",\"doi\":\"arxiv-2306.14004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop inferential tools for latent factor analysis in short panels. The\\npseudo maximum likelihood setting under a large cross-sectional dimension $n$\\nand a fixed time series dimension $T$ relies on a diagonal $T \\\\times T$\\ncovariance matrix of the errors without imposing sphericity or Gaussianity. We\\noutline the asymptotic distributions of the latent factor and error covariance\\nestimates as well as of an asymptotically uniformly most powerful invariant\\n(AUMPI) test based on the likelihood ratio statistic for tests of the number of\\nfactors. We derive the AUMPI characterization from inequalities ensuring the\\nmonotone likelihood ratio property for positive definite quadratic forms in\\nnormal variables. An empirical application to a large panel of monthly U.S.\\nstock returns separates date after date systematic and idiosyncratic risks in\\nshort subperiods of bear vs. bull market based on the selected number of\\nfactors. We observe an uptrend in idiosyncratic volatility while the systematic\\nrisk explains a large part of the cross-sectional total variance in bear\\nmarkets but is not driven by a single factor. We also find that observed\\nfactors, scaled or not, struggle spanning latent factors. Rank tests reveal\\nthat observed factors struggle spanning latent factors with a discrepancy\\nbetween the dimension of the two factor spaces decreasing over time.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2306.14004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2306.14004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在短板中开发潜在因素分析的推理工具。在大横截面维$n$和固定时间序列维$T$下的伪最大似然设置依赖于误差的对角线$T \乘以T$协方差矩阵,而不施加球性或高斯性。我们概述了潜在因子和误差协方差估计的渐近分布,以及基于数量因子检验的似然比统计量的渐近一致最强大不变量(AUMPI)检验。我们从保证正定二次型异常变量单调似然比性质的不等式中导出了AUMPI的刻画。对美国股票月度收益的大型面板进行实证应用,根据选定的数量因素,在熊市与牛市的短期子周期中分离日期后的系统风险和特殊风险。我们观察到特质波动率呈上升趋势,而系统风险解释了熊市横截面总方差的很大一部分,但不是由单一因素驱动的。我们还发现,观察到的因素,无论是否有规模,都在跨越潜在因素。秩检验表明,观察到的因素与潜在因素之间的差异随着时间的推移而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Factor Analysis in Short Panels
We develop inferential tools for latent factor analysis in short panels. The pseudo maximum likelihood setting under a large cross-sectional dimension $n$ and a fixed time series dimension $T$ relies on a diagonal $T \times T$ covariance matrix of the errors without imposing sphericity or Gaussianity. We outline the asymptotic distributions of the latent factor and error covariance estimates as well as of an asymptotically uniformly most powerful invariant (AUMPI) test based on the likelihood ratio statistic for tests of the number of factors. We derive the AUMPI characterization from inequalities ensuring the monotone likelihood ratio property for positive definite quadratic forms in normal variables. An empirical application to a large panel of monthly U.S. stock returns separates date after date systematic and idiosyncratic risks in short subperiods of bear vs. bull market based on the selected number of factors. We observe an uptrend in idiosyncratic volatility while the systematic risk explains a large part of the cross-sectional total variance in bear markets but is not driven by a single factor. We also find that observed factors, scaled or not, struggle spanning latent factors. Rank tests reveal that observed factors struggle spanning latent factors with a discrepancy between the dimension of the two factor spaces decreasing over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信