美国护照选项在指数lsamvy模型中

Zakaria Marah
{"title":"美国护照选项在指数lsamvy模型中","authors":"Zakaria Marah","doi":"arxiv-2307.16649","DOIUrl":null,"url":null,"abstract":"In this paper we examine the problem of valuing an exotic derivative known as\nthe American passport option where the underlying is driven by a L\\'evy\nprocess. The passport option is a call option on a trading account. We derive\nthe pricing equation, using the dynamic programming principle, and prove that\nthe option value is a viscosity solution of variational inequality. We also\nestablish the comparison principle, which yields uniqueness and the convexity\nof the viscosity solution.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"American Passport options in an exponential Lévy model\",\"authors\":\"Zakaria Marah\",\"doi\":\"arxiv-2307.16649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we examine the problem of valuing an exotic derivative known as\\nthe American passport option where the underlying is driven by a L\\\\'evy\\nprocess. The passport option is a call option on a trading account. We derive\\nthe pricing equation, using the dynamic programming principle, and prove that\\nthe option value is a viscosity solution of variational inequality. We also\\nestablish the comparison principle, which yields uniqueness and the convexity\\nof the viscosity solution.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2307.16649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2307.16649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个被称为美国护照期权的奇异衍生品的估值问题,其中基础是由L\ \ evyprocess驱动的。护照期权是交易账户的看涨期权。利用动态规划原理推导了期权定价方程,并证明了期权价值是变分不等式的粘性解。我们还建立了比较原理,得出了粘度解的唯一性和凸性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
American Passport options in an exponential Lévy model
In this paper we examine the problem of valuing an exotic derivative known as the American passport option where the underlying is driven by a L\'evy process. The passport option is a call option on a trading account. We derive the pricing equation, using the dynamic programming principle, and prove that the option value is a viscosity solution of variational inequality. We also establish the comparison principle, which yields uniqueness and the convexity of the viscosity solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信