扩散方程上带虚点的显式有限差分格式的不稳定性

Fabien Le Floc'h
{"title":"扩散方程上带虚点的显式有限差分格式的不稳定性","authors":"Fabien Le Floc'h","doi":"arxiv-2308.04629","DOIUrl":null,"url":null,"abstract":"Ghost, or fictitious points allow to capture boundary conditions that are not\nlocated on the finite difference grid discretization. We explore in this paper\nthe impact of ghost points on the stability of the explicit Euler finite\ndifference scheme in the context of the diffusion equation. In particular, we\nconsider the case of a one-touch option under the Black-Scholes model. The\nobservations and results are however valid for a much wider range of financial\ncontracts and models.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instabilities of explicit finite difference schemes with ghost points on the diffusion equation\",\"authors\":\"Fabien Le Floc'h\",\"doi\":\"arxiv-2308.04629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ghost, or fictitious points allow to capture boundary conditions that are not\\nlocated on the finite difference grid discretization. We explore in this paper\\nthe impact of ghost points on the stability of the explicit Euler finite\\ndifference scheme in the context of the diffusion equation. In particular, we\\nconsider the case of a one-touch option under the Black-Scholes model. The\\nobservations and results are however valid for a much wider range of financial\\ncontracts and models.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2308.04629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2308.04629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虚点或虚拟点允许捕获不在有限差分网格离散化上的边界条件。本文探讨了扩散方程中虚点对显式欧拉有限差分格式稳定性的影响。特别地,我们考虑布莱克-斯科尔斯模型下的一键式选项。然而,这些观察和结果对更广泛的金融合同和模型是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instabilities of explicit finite difference schemes with ghost points on the diffusion equation
Ghost, or fictitious points allow to capture boundary conditions that are not located on the finite difference grid discretization. We explore in this paper the impact of ghost points on the stability of the explicit Euler finite difference scheme in the context of the diffusion equation. In particular, we consider the case of a one-touch option under the Black-Scholes model. The observations and results are however valid for a much wider range of financial contracts and models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信