Vasicek模型下障碍期权定价的路径积分方法

Qi Chen, Chao Guo
{"title":"Vasicek模型下障碍期权定价的路径积分方法","authors":"Qi Chen, Chao Guo","doi":"arxiv-2307.07103","DOIUrl":null,"url":null,"abstract":"Path integral method in quantum theory provides a new thinking for time\ndependent option pricing. For barrier options, the option price changing\nprocess is similar to the infinite high barrier scattering problem in quantum\nmechanics; for double barrier options, the option price changing process is\nanalogous to a particle moving in a infinite square potential well. Using path\nintegral method, the expressions of pricing kernel and option price under\nVasicek stochastic interest rate model could be derived. Numerical results of\noptions price as functions of underlying prices are also shown.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path Integral Method for Barrier Option Pricing Under Vasicek Model\",\"authors\":\"Qi Chen, Chao Guo\",\"doi\":\"arxiv-2307.07103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Path integral method in quantum theory provides a new thinking for time\\ndependent option pricing. For barrier options, the option price changing\\nprocess is similar to the infinite high barrier scattering problem in quantum\\nmechanics; for double barrier options, the option price changing process is\\nanalogous to a particle moving in a infinite square potential well. Using path\\nintegral method, the expressions of pricing kernel and option price under\\nVasicek stochastic interest rate model could be derived. Numerical results of\\noptions price as functions of underlying prices are also shown.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2307.07103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2307.07103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子理论中的路径积分方法为时变期权定价提供了新的思路。对于障碍期权,其价格变化过程类似于量子力学中的无限高势垒散射问题;对于双障碍期权,期权价格的变化过程类似于一个粒子在无限平方势阱中运动。利用路径积分方法,推导了vasicek随机利率模型下定价核和期权价格的表达式。并给出了期权价格作为标的价格函数的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path Integral Method for Barrier Option Pricing Under Vasicek Model
Path integral method in quantum theory provides a new thinking for time dependent option pricing. For barrier options, the option price changing process is similar to the infinite high barrier scattering problem in quantum mechanics; for double barrier options, the option price changing process is analogous to a particle moving in a infinite square potential well. Using path integral method, the expressions of pricing kernel and option price under Vasicek stochastic interest rate model could be derived. Numerical results of options price as functions of underlying prices are also shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信