等变变压器的综合分子表示

Nianze Tao, Hiromi Morimoto, Stefano Leoni
{"title":"等变变压器的综合分子表示","authors":"Nianze Tao, Hiromi Morimoto, Stefano Leoni","doi":"arxiv-2308.10752","DOIUrl":null,"url":null,"abstract":"We implement an equivariant transformer that embeds molecular net charge and\nspin state without additional neural network parameters. The model trained on a\nsinglet/triplet non-correlated \\ce{CH2} dataset can identify different spin\nstates and shows state-of-the-art extrapolation capability. We found that\nSoftmax activation function utilised in the self-attention mechanism of graph\nnetworks outperformed ReLU-like functions in prediction accuracy. Additionally,\nincreasing the attention temperature from $\\tau = \\sqrt{d}$ to $\\sqrt{2d}$\nfurther improved the extrapolation capability. We also purposed a weight\ninitialisation method that sensibly accelerated the training process.","PeriodicalId":501259,"journal":{"name":"arXiv - PHYS - Atomic and Molecular Clusters","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Molecular Representation from Equivariant Transformer\",\"authors\":\"Nianze Tao, Hiromi Morimoto, Stefano Leoni\",\"doi\":\"arxiv-2308.10752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We implement an equivariant transformer that embeds molecular net charge and\\nspin state without additional neural network parameters. The model trained on a\\nsinglet/triplet non-correlated \\\\ce{CH2} dataset can identify different spin\\nstates and shows state-of-the-art extrapolation capability. We found that\\nSoftmax activation function utilised in the self-attention mechanism of graph\\nnetworks outperformed ReLU-like functions in prediction accuracy. Additionally,\\nincreasing the attention temperature from $\\\\tau = \\\\sqrt{d}$ to $\\\\sqrt{2d}$\\nfurther improved the extrapolation capability. We also purposed a weight\\ninitialisation method that sensibly accelerated the training process.\",\"PeriodicalId\":501259,\"journal\":{\"name\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2308.10752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic and Molecular Clusters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2308.10752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们实现了一个嵌入分子净电荷和自旋态的等变变压器,而不需要额外的神经网络参数。在单态/三重态不相关\ce{CH2}数据集上训练的模型可以识别不同的旋态,并显示出最先进的外推能力。我们发现,在graphnetworks的自注意机制中使用softmax激活函数在预测精度上优于类relu函数。此外,将注意力温度从$\tau = \sqrt{d}$提高到$\sqrt{2d}$进一步提高了外推能力。我们还设计了一种权重初始化方法,可以明显地加速训练过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Molecular Representation from Equivariant Transformer
We implement an equivariant transformer that embeds molecular net charge and spin state without additional neural network parameters. The model trained on a singlet/triplet non-correlated \ce{CH2} dataset can identify different spin states and shows state-of-the-art extrapolation capability. We found that Softmax activation function utilised in the self-attention mechanism of graph networks outperformed ReLU-like functions in prediction accuracy. Additionally, increasing the attention temperature from $\tau = \sqrt{d}$ to $\sqrt{2d}$ further improved the extrapolation capability. We also purposed a weight initialisation method that sensibly accelerated the training process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信