动力学趋化核的宏观测量、适态性和病态性的数值重建

Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang
{"title":"动力学趋化核的宏观测量、适态性和病态性的数值重建","authors":"Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang","doi":"arxiv-2309.05004","DOIUrl":null,"url":null,"abstract":"Directed bacterial motion due to external stimuli (chemotaxis) can, on the\nmesoscopic phase space, be described by a velocity change parameter $K$. The\nnumerical reconstruction for $K$ from experimental data provides useful\ninsights and plays a crucial role in model fitting, verification and\nprediction. In this article, the PDE-constrained optimization framework is\ndeployed to perform the reconstruction of $K$ from velocity-averaged, localized\ndata taken in the interior of a 1D domain. Depending on the data preparation\nand experimental setup, this problem can either be well- or ill-posed. We\nanalyze these situations, and propose a very specific design that guarantees\nlocal convergence. The design is adapted to the discretization of $K$ and\ndecouples the reconstruction of local values into smaller cell problem, opening\nup opportunities for parallelization. We further provide numerical evidence as\na showcase for the theoretical results.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"44 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical reconstruction of the kinetic chemotaxis kernel from macroscopic measurement, wellposedness and illposedness\",\"authors\":\"Kathrin Hellmuth, Christian Klingenberg, Qin Li, Min Tang\",\"doi\":\"arxiv-2309.05004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directed bacterial motion due to external stimuli (chemotaxis) can, on the\\nmesoscopic phase space, be described by a velocity change parameter $K$. The\\nnumerical reconstruction for $K$ from experimental data provides useful\\ninsights and plays a crucial role in model fitting, verification and\\nprediction. In this article, the PDE-constrained optimization framework is\\ndeployed to perform the reconstruction of $K$ from velocity-averaged, localized\\ndata taken in the interior of a 1D domain. Depending on the data preparation\\nand experimental setup, this problem can either be well- or ill-posed. We\\nanalyze these situations, and propose a very specific design that guarantees\\nlocal convergence. The design is adapted to the discretization of $K$ and\\ndecouples the reconstruction of local values into smaller cell problem, opening\\nup opportunities for parallelization. We further provide numerical evidence as\\na showcase for the theoretical results.\",\"PeriodicalId\":501321,\"journal\":{\"name\":\"arXiv - QuanBio - Cell Behavior\",\"volume\":\"44 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Cell Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.05004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.05004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细菌由于外界刺激(趋化性)而进行的定向运动,在微观相空间上可以用速度变化参数K来描述。从实验数据中对$K$进行数值重建提供了有用的见解,在模型拟合、验证和预测中起着至关重要的作用。在本文中,部署了pde约束优化框架,从一维域内部的速度平均本地化数据中执行$K$的重建。根据数据准备和实验设置的不同,这个问题可以是适定的,也可以是不适定的。我们分析了这些情况,并提出了一个非常具体的设计,以保证局部收敛。该设计适合于K的离散化,并将局部值的重建解耦到较小的单元问题中,从而为并行化提供了机会。我们进一步提供了数值证据来展示理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical reconstruction of the kinetic chemotaxis kernel from macroscopic measurement, wellposedness and illposedness
Directed bacterial motion due to external stimuli (chemotaxis) can, on the mesoscopic phase space, be described by a velocity change parameter $K$. The numerical reconstruction for $K$ from experimental data provides useful insights and plays a crucial role in model fitting, verification and prediction. In this article, the PDE-constrained optimization framework is deployed to perform the reconstruction of $K$ from velocity-averaged, localized data taken in the interior of a 1D domain. Depending on the data preparation and experimental setup, this problem can either be well- or ill-posed. We analyze these situations, and propose a very specific design that guarantees local convergence. The design is adapted to the discretization of $K$ and decouples the reconstruction of local values into smaller cell problem, opening up opportunities for parallelization. We further provide numerical evidence as a showcase for the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信