简要介绍一下用整数策略对任意数量的欧洲期权进行超级对冲

Dorsaf Cherif, Meriam El Mansour, Emmanuel Lepinette
{"title":"简要介绍一下用整数策略对任意数量的欧洲期权进行超级对冲","authors":"Dorsaf Cherif, Meriam El Mansour, Emmanuel Lepinette","doi":"arxiv-2311.08871","DOIUrl":null,"url":null,"abstract":"The usual theory of asset pricing in finance assumes that the financial\nstrategies, i.e. the quantity of risky assets to invest, are real-valued so\nthat they are not integer-valued in general, see the Black and Scholes model\nfor instance. This is clearly contrary to what it is possible to do in the real\nworld. Surprisingly, it seems that there is no many contributions in that\ndirection in the literature, except for a finite number of states. In this\npaper, for arbitrary {\\Omega}, we show that, in discrete-time, it is possible\nto evaluate the minimal super-hedging price when we restrict ourselves to\ninteger-valued strategies. To do so, we only consider terminal claims that are\ncontinuous piecewise affine functions of the underlying asset. We formulate a\ndynamic programming principle that can be directly implemented on an historical\ndata and which also provides the optimal integer-valued strategy. The problem\nwith general payoffs remains open but should be solved with the same approach.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A short note on super-hedging an arbitrary number of European options with integer-valued strategies\",\"authors\":\"Dorsaf Cherif, Meriam El Mansour, Emmanuel Lepinette\",\"doi\":\"arxiv-2311.08871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The usual theory of asset pricing in finance assumes that the financial\\nstrategies, i.e. the quantity of risky assets to invest, are real-valued so\\nthat they are not integer-valued in general, see the Black and Scholes model\\nfor instance. This is clearly contrary to what it is possible to do in the real\\nworld. Surprisingly, it seems that there is no many contributions in that\\ndirection in the literature, except for a finite number of states. In this\\npaper, for arbitrary {\\\\Omega}, we show that, in discrete-time, it is possible\\nto evaluate the minimal super-hedging price when we restrict ourselves to\\ninteger-valued strategies. To do so, we only consider terminal claims that are\\ncontinuous piecewise affine functions of the underlying asset. We formulate a\\ndynamic programming principle that can be directly implemented on an historical\\ndata and which also provides the optimal integer-valued strategy. The problem\\nwith general payoffs remains open but should be solved with the same approach.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.08871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.08871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通常的金融资产定价理论假设金融策略,即要投资的风险资产的数量,是实值的,因此它们通常不是整数值,例如,参见Black和Scholes模型。这显然与现实世界中可能做到的事情相反。令人惊讶的是,除了有限数量的状态外,在文献中似乎没有太多关于这个方向的贡献。在本文中,对于任意{\Omega},我们证明了,在离散时间,当我们将自己限制在整数值策略中时,有可能评估最小超对冲价格。为此,我们只考虑作为基础资产的连续分段仿射函数的终端债权。我们提出了可以直接在历史数据上实现的动态规划原理,并提供了最优整数值策略。总体收益的问题仍然悬而未决,但应该用同样的方法来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A short note on super-hedging an arbitrary number of European options with integer-valued strategies
The usual theory of asset pricing in finance assumes that the financial strategies, i.e. the quantity of risky assets to invest, are real-valued so that they are not integer-valued in general, see the Black and Scholes model for instance. This is clearly contrary to what it is possible to do in the real world. Surprisingly, it seems that there is no many contributions in that direction in the literature, except for a finite number of states. In this paper, for arbitrary {\Omega}, we show that, in discrete-time, it is possible to evaluate the minimal super-hedging price when we restrict ourselves to integer-valued strategies. To do so, we only consider terminal claims that are continuous piecewise affine functions of the underlying asset. We formulate a dynamic programming principle that can be directly implemented on an historical data and which also provides the optimal integer-valued strategy. The problem with general payoffs remains open but should be solved with the same approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信