{"title":"受有界对势扰动的布朗路径的均方位移","authors":"Volker Betz, Tobias Schmidt, Mark Sellke","doi":"arxiv-2312.02709","DOIUrl":null,"url":null,"abstract":"We study Brownian paths perturbed by semibounded pair potentials and prove\nupper bounds on the mean square displacement. As a technical tool we derive\ninfinite dimensional versions of key inequalities that were first used in\n[Sellke; arXiv:2212.14023] in order to study the effective mass of the\nFr\\\"ohlich polaron.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean square displacement of Brownian paths perturbed by bounded pair potentials\",\"authors\":\"Volker Betz, Tobias Schmidt, Mark Sellke\",\"doi\":\"arxiv-2312.02709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Brownian paths perturbed by semibounded pair potentials and prove\\nupper bounds on the mean square displacement. As a technical tool we derive\\ninfinite dimensional versions of key inequalities that were first used in\\n[Sellke; arXiv:2212.14023] in order to study the effective mass of the\\nFr\\\\\\\"ohlich polaron.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mean square displacement of Brownian paths perturbed by bounded pair potentials
We study Brownian paths perturbed by semibounded pair potentials and prove
upper bounds on the mean square displacement. As a technical tool we derive
infinite dimensional versions of key inequalities that were first used in
[Sellke; arXiv:2212.14023] in order to study the effective mass of the
Fr\"ohlich polaron.