Tomislav Došlić, Mate Puljiz, Stjepan Šebek, Josip Žubrinić
{"title":"梯子上的里德伯原子","authors":"Tomislav Došlić, Mate Puljiz, Stjepan Šebek, Josip Žubrinić","doi":"arxiv-2312.02747","DOIUrl":null,"url":null,"abstract":"In this article, we study the dynamic variant and the equilibrium variant of\nthe model of Rydberg atoms on a square ladder. In the dynamic case, we obtain\nthe jamming limit for all values of $b \\ge 1$, where $b$ represents the\nso-called blockade range of a Rydberg atom. In the equilibrium case, we derive\nthe complexity function for all values of $b \\ge 1$. By comparing these\nresults, we highlight significant differences in the behavior of the two models\nas $b$ approaches infinity.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"38 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rydberg atoms on a ladder\",\"authors\":\"Tomislav Došlić, Mate Puljiz, Stjepan Šebek, Josip Žubrinić\",\"doi\":\"arxiv-2312.02747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the dynamic variant and the equilibrium variant of\\nthe model of Rydberg atoms on a square ladder. In the dynamic case, we obtain\\nthe jamming limit for all values of $b \\\\ge 1$, where $b$ represents the\\nso-called blockade range of a Rydberg atom. In the equilibrium case, we derive\\nthe complexity function for all values of $b \\\\ge 1$. By comparing these\\nresults, we highlight significant differences in the behavior of the two models\\nas $b$ approaches infinity.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"38 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this article, we study the dynamic variant and the equilibrium variant of
the model of Rydberg atoms on a square ladder. In the dynamic case, we obtain
the jamming limit for all values of $b \ge 1$, where $b$ represents the
so-called blockade range of a Rydberg atom. In the equilibrium case, we derive
the complexity function for all values of $b \ge 1$. By comparing these
results, we highlight significant differences in the behavior of the two models
as $b$ approaches infinity.