PDE模型中的贝叶斯非参数推理:渐近理论与实现

Matteo Giordano
{"title":"PDE模型中的贝叶斯非参数推理:渐近理论与实现","authors":"Matteo Giordano","doi":"arxiv-2311.18322","DOIUrl":null,"url":null,"abstract":"Parameter identification problems in partial differential equations (PDEs)\nconsist in determining one or more unknown functional parameters in a PDE.\nHere, the Bayesian nonparametric approach to such problems is considered.\nFocusing on the representative example of inferring the diffusivity function in\nan elliptic PDE from noisy observations of the PDE solution, the performance of\nBayesian procedures based on Gaussian process priors is investigated. Recent\nasymptotic theoretical guarantees establishing posterior consistency and\nconvergence rates are reviewed and expanded upon. An implementation of the\nassociated posterior-based inference is provided, and illustrated via a\nnumerical simulation study where two different discretisation strategies are\ndevised. The reproducible code is available at: https://github.com/MattGiord.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"84 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian nonparametric inference in PDE models: asymptotic theory and implementation\",\"authors\":\"Matteo Giordano\",\"doi\":\"arxiv-2311.18322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameter identification problems in partial differential equations (PDEs)\\nconsist in determining one or more unknown functional parameters in a PDE.\\nHere, the Bayesian nonparametric approach to such problems is considered.\\nFocusing on the representative example of inferring the diffusivity function in\\nan elliptic PDE from noisy observations of the PDE solution, the performance of\\nBayesian procedures based on Gaussian process priors is investigated. Recent\\nasymptotic theoretical guarantees establishing posterior consistency and\\nconvergence rates are reviewed and expanded upon. An implementation of the\\nassociated posterior-based inference is provided, and illustrated via a\\nnumerical simulation study where two different discretisation strategies are\\ndevised. The reproducible code is available at: https://github.com/MattGiord.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"84 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.18322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.18322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

偏微分方程的参数辨识问题包括确定偏微分方程中一个或多个未知的函数参数。在这里,考虑贝叶斯非参数方法来解决这类问题。以椭圆偏微分方程解的噪声观测推断其扩散函数为例,研究了基于高斯过程先验的贝叶斯算法的性能。对最近建立后验一致性和收敛率的渐近理论保证进行了回顾和扩展。提供了相关的基于后验推理的实现,并通过数值模拟研究说明了两种不同的离散化策略。可复制的代码可在:https://github.com/MattGiord。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian nonparametric inference in PDE models: asymptotic theory and implementation
Parameter identification problems in partial differential equations (PDEs) consist in determining one or more unknown functional parameters in a PDE. Here, the Bayesian nonparametric approach to such problems is considered. Focusing on the representative example of inferring the diffusivity function in an elliptic PDE from noisy observations of the PDE solution, the performance of Bayesian procedures based on Gaussian process priors is investigated. Recent asymptotic theoretical guarantees establishing posterior consistency and convergence rates are reviewed and expanded upon. An implementation of the associated posterior-based inference is provided, and illustrated via a numerical simulation study where two different discretisation strategies are devised. The reproducible code is available at: https://github.com/MattGiord.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信