基于对数凹性假设的双样本位置移位模型

Ridhiman Saha, Priyam Das, Nilanjana Laha
{"title":"基于对数凹性假设的双样本位置移位模型","authors":"Ridhiman Saha, Priyam Das, Nilanjana Laha","doi":"arxiv-2311.18277","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the two-sample location shift model, a classic\nsemiparametric model introduced by Stein (1956). This model is known for its\nadaptive nature, enabling nonparametric estimation with full parametric\nefficiency. Existing nonparametric estimators of the location shift often\ndepend on external tuning parameters, which restricts their practical\napplicability (Van der Vaart and Wellner, 2021). We demonstrate that\nintroducing an additional assumption of log-concavity on the underlying density\ncan alleviate the need for tuning parameters. We propose a one step estimator\nfor location shift estimation, utilizing log-concave density estimation\ntechniques to facilitate tuning-free estimation of the efficient influence\nfunction. While we employ a truncated version of the one step estimator for\ntheoretical adaptivity, our simulations indicate that the one step estimators\nperform best with zero truncation, eliminating the need for tuning during\npractical implementation.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"85 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the two-sample location shift model with a log-concavity assumption\",\"authors\":\"Ridhiman Saha, Priyam Das, Nilanjana Laha\",\"doi\":\"arxiv-2311.18277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the two-sample location shift model, a classic\\nsemiparametric model introduced by Stein (1956). This model is known for its\\nadaptive nature, enabling nonparametric estimation with full parametric\\nefficiency. Existing nonparametric estimators of the location shift often\\ndepend on external tuning parameters, which restricts their practical\\napplicability (Van der Vaart and Wellner, 2021). We demonstrate that\\nintroducing an additional assumption of log-concavity on the underlying density\\ncan alleviate the need for tuning parameters. We propose a one step estimator\\nfor location shift estimation, utilizing log-concave density estimation\\ntechniques to facilitate tuning-free estimation of the efficient influence\\nfunction. While we employ a truncated version of the one step estimator for\\ntheoretical adaptivity, our simulations indicate that the one step estimators\\nperform best with zero truncation, eliminating the need for tuning during\\npractical implementation.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"85 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.18277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.18277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑Stein(1956)提出的经典半参数模型——双样本位置移位模型。该模型以其自适应特性而闻名,使非参数估计具有充分的参数效率。现有的位置移位的非参数估计器通常依赖于外部调谐参数,这限制了它们的实际适用性(Van der Vaart和Wellner, 2021)。我们证明了在底层密度上引入一个额外的对数凹性假设可以减轻对参数调优的需要。我们提出了一个用于位置移位估计的一步估计器,利用对数凹密度估计技术来促进有效影响函数的无调谐估计。虽然我们采用截断版本的一步估计器进行理论自适应,但我们的模拟表明,一步估计器在零截断时表现最佳,从而消除了在实际实现期间调整的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the two-sample location shift model with a log-concavity assumption
In this paper, we consider the two-sample location shift model, a classic semiparametric model introduced by Stein (1956). This model is known for its adaptive nature, enabling nonparametric estimation with full parametric efficiency. Existing nonparametric estimators of the location shift often depend on external tuning parameters, which restricts their practical applicability (Van der Vaart and Wellner, 2021). We demonstrate that introducing an additional assumption of log-concavity on the underlying density can alleviate the need for tuning parameters. We propose a one step estimator for location shift estimation, utilizing log-concave density estimation techniques to facilitate tuning-free estimation of the efficient influence function. While we employ a truncated version of the one step estimator for theoretical adaptivity, our simulations indicate that the one step estimators perform best with zero truncation, eliminating the need for tuning during practical implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信