一类混合滤波下指数分布的贝叶斯估计最优变量接受抽样方案

Ashlyn Maria Mathai, Mahesh Kumar
{"title":"一类混合滤波下指数分布的贝叶斯估计最优变量接受抽样方案","authors":"Ashlyn Maria Mathai, Mahesh Kumar","doi":"arxiv-2311.16693","DOIUrl":null,"url":null,"abstract":"In this study, variable acceptance sampling plans under Type I hybrid\ncensoring is designed for a lot of independent and identical units with\nexponential lifetimes using Bayesian estimate of the parameter $\\vartheta$.\nThis approach is new from the conventional methods in acceptance sampling plan\nwhich relay on maximum likelihood estimate and minimising of Bayes risk.\nBayesian estimate is obtained using squared error loss and Linex loss\nfunctions. Optimisation problem is solved for minimising the testing cost under\neach methods and optimal values of the plan parameters $n, t_1$ and $t_2$ are\ncalculated. The proposed plans are illustrated using various examples and a\nreal life case study is also conducted. Expected testing cost of the sampling\nplan obtained using squared error loss function is much lower than the cost of\nexisting plans using maximum likelihood estimate.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"85 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal variable acceptance sampling plan for exponential distribution using Bayesian estimate under Type I hybrid censoring\",\"authors\":\"Ashlyn Maria Mathai, Mahesh Kumar\",\"doi\":\"arxiv-2311.16693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, variable acceptance sampling plans under Type I hybrid\\ncensoring is designed for a lot of independent and identical units with\\nexponential lifetimes using Bayesian estimate of the parameter $\\\\vartheta$.\\nThis approach is new from the conventional methods in acceptance sampling plan\\nwhich relay on maximum likelihood estimate and minimising of Bayes risk.\\nBayesian estimate is obtained using squared error loss and Linex loss\\nfunctions. Optimisation problem is solved for minimising the testing cost under\\neach methods and optimal values of the plan parameters $n, t_1$ and $t_2$ are\\ncalculated. The proposed plans are illustrated using various examples and a\\nreal life case study is also conducted. Expected testing cost of the sampling\\nplan obtained using squared error loss function is much lower than the cost of\\nexisting plans using maximum likelihood estimate.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.16693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.16693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,使用参数$\vartheta$的贝叶斯估计,针对许多具有指数寿命的独立且相同的单元,设计了I型混合滤波下的可变接受抽样方案。该方法是对传统的验收抽样方法的一种创新,它依赖于最大似然估计和贝叶斯风险最小化。利用误差平方损失和Linex损失函数得到贝叶斯估计。为了使每种方法下的测试成本最小化,解决了优化问题,并重新计算了计划参数$n, t_1$和$t_2$的最优值。提出的方案用各种实例说明,并进行了实际生活中的案例研究。使用平方误差损失函数获得的采样计划的期望测试成本远低于使用最大似然估计的现有计划的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal variable acceptance sampling plan for exponential distribution using Bayesian estimate under Type I hybrid censoring
In this study, variable acceptance sampling plans under Type I hybrid censoring is designed for a lot of independent and identical units with exponential lifetimes using Bayesian estimate of the parameter $\vartheta$. This approach is new from the conventional methods in acceptance sampling plan which relay on maximum likelihood estimate and minimising of Bayes risk. Bayesian estimate is obtained using squared error loss and Linex loss functions. Optimisation problem is solved for minimising the testing cost under each methods and optimal values of the plan parameters $n, t_1$ and $t_2$ are calculated. The proposed plans are illustrated using various examples and a real life case study is also conducted. Expected testing cost of the sampling plan obtained using squared error loss function is much lower than the cost of existing plans using maximum likelihood estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信