基于Wasserstein空间多面体优化的平均场变分推理算法

Yiheng Jiang, Sinho Chewi, Aram-Alexandre Pooladian
{"title":"基于Wasserstein空间多面体优化的平均场变分推理算法","authors":"Yiheng Jiang, Sinho Chewi, Aram-Alexandre Pooladian","doi":"arxiv-2312.02849","DOIUrl":null,"url":null,"abstract":"We develop a theory of finite-dimensional polyhedral subsets over the\nWasserstein space and optimization of functionals over them via first-order\nmethods. Our main application is to the problem of mean-field variational\ninference, which seeks to approximate a distribution $\\pi$ over $\\mathbb{R}^d$\nby a product measure $\\pi^\\star$. When $\\pi$ is strongly log-concave and\nlog-smooth, we provide (1) approximation rates certifying that $\\pi^\\star$ is\nclose to the minimizer $\\pi^\\star_\\diamond$ of the KL divergence over a\n\\emph{polyhedral} set $\\mathcal{P}_\\diamond$, and (2) an algorithm for\nminimizing $\\text{KL}(\\cdot\\|\\pi)$ over $\\mathcal{P}_\\diamond$ with accelerated\ncomplexity $O(\\sqrt \\kappa \\log(\\kappa d/\\varepsilon^2))$, where $\\kappa$ is\nthe condition number of $\\pi$.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"86 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space\",\"authors\":\"Yiheng Jiang, Sinho Chewi, Aram-Alexandre Pooladian\",\"doi\":\"arxiv-2312.02849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a theory of finite-dimensional polyhedral subsets over the\\nWasserstein space and optimization of functionals over them via first-order\\nmethods. Our main application is to the problem of mean-field variational\\ninference, which seeks to approximate a distribution $\\\\pi$ over $\\\\mathbb{R}^d$\\nby a product measure $\\\\pi^\\\\star$. When $\\\\pi$ is strongly log-concave and\\nlog-smooth, we provide (1) approximation rates certifying that $\\\\pi^\\\\star$ is\\nclose to the minimizer $\\\\pi^\\\\star_\\\\diamond$ of the KL divergence over a\\n\\\\emph{polyhedral} set $\\\\mathcal{P}_\\\\diamond$, and (2) an algorithm for\\nminimizing $\\\\text{KL}(\\\\cdot\\\\|\\\\pi)$ over $\\\\mathcal{P}_\\\\diamond$ with accelerated\\ncomplexity $O(\\\\sqrt \\\\kappa \\\\log(\\\\kappa d/\\\\varepsilon^2))$, where $\\\\kappa$ is\\nthe condition number of $\\\\pi$.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"86 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了wasserstein空间上有限维多面体子集的理论,并通过一阶方法对其上的泛函进行了优化。我们的主要应用是均值场变分推理问题,它寻求近似分布 $\pi$ 结束 $\mathbb{R}^d$通过产品测量 $\pi^\star$. 什么时候 $\pi$ 是强对数凹和对数光滑,我们提供(1)近似速率证明 $\pi^\star$ 接近最小化器 $\pi^\star_\diamond$ KL散度的值 \emph{多面体} 集合 $\mathcal{P}_\diamond$(2)最小化算法 $\text{KL}(\cdot\|\pi)$ 结束 $\mathcal{P}_\diamond$ 伴随着加速的复杂性 $O(\sqrt \kappa \log(\kappa d/\varepsilon^2))$,其中 $\kappa$ 的条件数 $\pi$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
We develop a theory of finite-dimensional polyhedral subsets over the Wasserstein space and optimization of functionals over them via first-order methods. Our main application is to the problem of mean-field variational inference, which seeks to approximate a distribution $\pi$ over $\mathbb{R}^d$ by a product measure $\pi^\star$. When $\pi$ is strongly log-concave and log-smooth, we provide (1) approximation rates certifying that $\pi^\star$ is close to the minimizer $\pi^\star_\diamond$ of the KL divergence over a \emph{polyhedral} set $\mathcal{P}_\diamond$, and (2) an algorithm for minimizing $\text{KL}(\cdot\|\pi)$ over $\mathcal{P}_\diamond$ with accelerated complexity $O(\sqrt \kappa \log(\kappa d/\varepsilon^2))$, where $\kappa$ is the condition number of $\pi$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信