网络干扰下估计因果效应的Horvitz-Thompson估计的可容许性

Vishesh Karwa, Edoardo M. Airoldi
{"title":"网络干扰下估计因果效应的Horvitz-Thompson估计的可容许性","authors":"Vishesh Karwa, Edoardo M. Airoldi","doi":"arxiv-2312.01234","DOIUrl":null,"url":null,"abstract":"The Horvitz-Thompson (H-T) estimator is widely used for estimating various\ntypes of average treatment effects under network interference. We\nsystematically investigate the optimality properties of H-T estimator under\nnetwork interference, by embedding it in the class of all linear estimators. In\nparticular, we show that in presence of any kind of network interference, H-T\nestimator is in-admissible in the class of all linear estimators when using a\ncompletely randomized and a Bernoulli design. We also show that the H-T\nestimator becomes admissible under certain restricted randomization schemes\ntermed as ``fixed exposure designs''. We give examples of such fixed exposure\ndesigns. It is well known that the H-T estimator is unbiased when correct\nweights are specified. Here, we derive the weights for unbiased estimation of\nvarious causal effects, and illustrate how they depend not only on the design,\nbut more importantly, on the assumed form of interference (which in many real\nworld situations is unknown at design stage), and the causal effect of\ninterest.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"87 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the admissibility of Horvitz-Thompson estimator for estimating causal effects under network interference\",\"authors\":\"Vishesh Karwa, Edoardo M. Airoldi\",\"doi\":\"arxiv-2312.01234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Horvitz-Thompson (H-T) estimator is widely used for estimating various\\ntypes of average treatment effects under network interference. We\\nsystematically investigate the optimality properties of H-T estimator under\\nnetwork interference, by embedding it in the class of all linear estimators. In\\nparticular, we show that in presence of any kind of network interference, H-T\\nestimator is in-admissible in the class of all linear estimators when using a\\ncompletely randomized and a Bernoulli design. We also show that the H-T\\nestimator becomes admissible under certain restricted randomization schemes\\ntermed as ``fixed exposure designs''. We give examples of such fixed exposure\\ndesigns. It is well known that the H-T estimator is unbiased when correct\\nweights are specified. Here, we derive the weights for unbiased estimation of\\nvarious causal effects, and illustrate how they depend not only on the design,\\nbut more importantly, on the assumed form of interference (which in many real\\nworld situations is unknown at design stage), and the causal effect of\\ninterest.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"87 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.01234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.01234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Horvitz-Thompson (H-T)估计量被广泛用于估计网络干扰下各种类型的平均处理效果。通过将H-T估计量嵌入到所有线性估计量的类中,系统地研究了网络干扰下H-T估计量的最优性。特别地,我们证明了在存在任何类型的网络干扰的情况下,当使用完全随机和伯努利设计时,h -估计量在所有线性估计量的类别中是不允许的。我们还证明了h - estimator在一定的受限随机化方案(称为“固定暴露设计”)下是可接受的。我们给出了这种固定曝光设计的例子。众所周知,当正确权值被指定时,H-T估计量是无偏的。在这里,我们推导了各种因果效应的无偏估计的权重,并说明了它们不仅取决于设计,更重要的是,取决于假设的干扰形式(在许多现实世界的情况下,在设计阶段是未知的),以及兴趣的因果效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the admissibility of Horvitz-Thompson estimator for estimating causal effects under network interference
The Horvitz-Thompson (H-T) estimator is widely used for estimating various types of average treatment effects under network interference. We systematically investigate the optimality properties of H-T estimator under network interference, by embedding it in the class of all linear estimators. In particular, we show that in presence of any kind of network interference, H-T estimator is in-admissible in the class of all linear estimators when using a completely randomized and a Bernoulli design. We also show that the H-T estimator becomes admissible under certain restricted randomization schemes termed as ``fixed exposure designs''. We give examples of such fixed exposure designs. It is well known that the H-T estimator is unbiased when correct weights are specified. Here, we derive the weights for unbiased estimation of various causal effects, and illustrate how they depend not only on the design, but more importantly, on the assumed form of interference (which in many real world situations is unknown at design stage), and the causal effect of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信