意见趋同

Vladimir Vovk
{"title":"意见趋同","authors":"Vladimir Vovk","doi":"arxiv-2312.02033","DOIUrl":null,"url":null,"abstract":"This paper establishes a game-theoretic version of the classical\nBlackwell-Dubins result. We consider two forecasters who at each step issue\nprobability forecasts for the infinite future. Our result says that either at\nleast one of the two forecasters will be discredited or their forecasts will\nconverge in total variation.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of opinions\",\"authors\":\"Vladimir Vovk\",\"doi\":\"arxiv-2312.02033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes a game-theoretic version of the classical\\nBlackwell-Dubins result. We consider two forecasters who at each step issue\\nprobability forecasts for the infinite future. Our result says that either at\\nleast one of the two forecasters will be discredited or their forecasts will\\nconverge in total variation.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了经典blackwell - dubins结果的博弈论版本。我们考虑两个预测者,他们在每一步都对无限的未来进行概率预测。我们的结果表明,两个预测者中至少有一个将被怀疑,或者他们的预测将在总变化中收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of opinions
This paper establishes a game-theoretic version of the classical Blackwell-Dubins result. We consider two forecasters who at each step issue probability forecasts for the infinite future. Our result says that either at least one of the two forecasters will be discredited or their forecasts will converge in total variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信