丝状结构的置信区域

Wanli Qiao
{"title":"丝状结构的置信区域","authors":"Wanli Qiao","doi":"arxiv-2311.17831","DOIUrl":null,"url":null,"abstract":"Filamentary structures, also called ridges, generalize the concept of modes\nof density functions and provide low-dimensional representations of point\nclouds. Using kernel type plug-in estimators, we give asymptotic confidence\nregions for filamentary structures based on two bootstrap approaches:\nmultiplier bootstrap and empirical bootstrap. Our theoretical framework\nrespects the topological structure of ridges by allowing the possible existence\nof intersections. Different asymptotic behaviors of the estimators are analyzed\ndepending on how flat the ridges are, and our confidence regions are shown to\nbe asymptotically valid in different scenarios in a unified form. As a critical\nstep in the derivation, we approximate the suprema of the relevant empirical\nprocesses by those of Gaussian processes, which are degenerate in our problem\nand are handled by anti-concentration inequalities for Gaussian processes that\ndo not require positive infimum variance.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confidence Regions for Filamentary Structures\",\"authors\":\"Wanli Qiao\",\"doi\":\"arxiv-2311.17831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Filamentary structures, also called ridges, generalize the concept of modes\\nof density functions and provide low-dimensional representations of point\\nclouds. Using kernel type plug-in estimators, we give asymptotic confidence\\nregions for filamentary structures based on two bootstrap approaches:\\nmultiplier bootstrap and empirical bootstrap. Our theoretical framework\\nrespects the topological structure of ridges by allowing the possible existence\\nof intersections. Different asymptotic behaviors of the estimators are analyzed\\ndepending on how flat the ridges are, and our confidence regions are shown to\\nbe asymptotically valid in different scenarios in a unified form. As a critical\\nstep in the derivation, we approximate the suprema of the relevant empirical\\nprocesses by those of Gaussian processes, which are degenerate in our problem\\nand are handled by anti-concentration inequalities for Gaussian processes that\\ndo not require positive infimum variance.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.17831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.17831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

丝状结构,也称为脊,推广了密度函数模式的概念,并提供了点云的低维表示。利用核型插件估计器,基于乘子自举和经验自举两种自举方法,给出了丝状结构的渐近置信区域。我们的理论框架通过允许可能存在的交叉来尊重脊的拓扑结构。根据脊的平坦程度分析了估计量的不同渐近行为,并以统一的形式证明了我们的置信区域在不同情况下是渐近有效的。作为推导的关键一步,我们用高斯过程的经验过程逼近相关经验过程的上界,在我们的问题中,高斯过程是退化的,用不需要正最小方差的高斯过程的反集中不等式来处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confidence Regions for Filamentary Structures
Filamentary structures, also called ridges, generalize the concept of modes of density functions and provide low-dimensional representations of point clouds. Using kernel type plug-in estimators, we give asymptotic confidence regions for filamentary structures based on two bootstrap approaches: multiplier bootstrap and empirical bootstrap. Our theoretical framework respects the topological structure of ridges by allowing the possible existence of intersections. Different asymptotic behaviors of the estimators are analyzed depending on how flat the ridges are, and our confidence regions are shown to be asymptotically valid in different scenarios in a unified form. As a critical step in the derivation, we approximate the suprema of the relevant empirical processes by those of Gaussian processes, which are degenerate in our problem and are handled by anti-concentration inequalities for Gaussian processes that do not require positive infimum variance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信