共线性误差变量回归模型的截断奇异值分解估计量的强相合性

Kensuke Aishima
{"title":"共线性误差变量回归模型的截断奇异值分解估计量的强相合性","authors":"Kensuke Aishima","doi":"arxiv-2311.17407","DOIUrl":null,"url":null,"abstract":"In this paper, we prove strong consistency of an estimator by the truncated\nsingular value decomposition for a multivariate errors-in-variables linear\nregression model with collinearity. This result is an extension of Gleser's\nproof of the strong consistency of total least squares solutions to the case\nwith modern rank constraints. While the usual discussion of consistency in the\nabsence of solution uniqueness deals with the minimal norm solution, the\ncontribution of this study is to develop a theory that shows the strong\nconsistency of a set of solutions. The proof is based on properties of\northogonal projections, specifically properties of the Rayleigh-Ritz procedure\nfor computing eigenvalues. This makes it suitable for targeting problems where\nsome row vectors of the matrices do not contain noise. Therefore, this paper\ngives a proof for the regression model with the above condition on the row\nvectors, resulting in a natural generalization of the strong consistency for\nthe standard TLS estimator.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"93 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong consistency of an estimator by the truncated singular value decomposition for an errors-in-variables regression model with collinearity\",\"authors\":\"Kensuke Aishima\",\"doi\":\"arxiv-2311.17407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove strong consistency of an estimator by the truncated\\nsingular value decomposition for a multivariate errors-in-variables linear\\nregression model with collinearity. This result is an extension of Gleser's\\nproof of the strong consistency of total least squares solutions to the case\\nwith modern rank constraints. While the usual discussion of consistency in the\\nabsence of solution uniqueness deals with the minimal norm solution, the\\ncontribution of this study is to develop a theory that shows the strong\\nconsistency of a set of solutions. The proof is based on properties of\\northogonal projections, specifically properties of the Rayleigh-Ritz procedure\\nfor computing eigenvalues. This makes it suitable for targeting problems where\\nsome row vectors of the matrices do not contain noise. Therefore, this paper\\ngives a proof for the regression model with the above condition on the row\\nvectors, resulting in a natural generalization of the strong consistency for\\nthe standard TLS estimator.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"93 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.17407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.17407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用截断奇异值分解证明了一类具有共线性的多元误差变量线性回归模型的估计量的强相合性。这个结果是Gleser对具有现代秩约束的情况的总最小二乘解的强一致性证明的推广。虽然通常讨论解不存在唯一性时的一致性处理的是最小范数解,但本研究的贡献是发展了一个理论,表明一组解的强一致性。证明是基于正交投影的性质,特别是计算特征值的瑞利-里兹过程的性质。这使得它适合于定位矩阵的某些行向量不包含噪声的问题。因此,本文给出了具有上述条件的回归模型在行向量上的证明,从而对标准TLS估计量的强相合性进行了自然推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong consistency of an estimator by the truncated singular value decomposition for an errors-in-variables regression model with collinearity
In this paper, we prove strong consistency of an estimator by the truncated singular value decomposition for a multivariate errors-in-variables linear regression model with collinearity. This result is an extension of Gleser's proof of the strong consistency of total least squares solutions to the case with modern rank constraints. While the usual discussion of consistency in the absence of solution uniqueness deals with the minimal norm solution, the contribution of this study is to develop a theory that shows the strong consistency of a set of solutions. The proof is based on properties of orthogonal projections, specifically properties of the Rayleigh-Ritz procedure for computing eigenvalues. This makes it suitable for targeting problems where some row vectors of the matrices do not contain noise. Therefore, this paper gives a proof for the regression model with the above condition on the row vectors, resulting in a natural generalization of the strong consistency for the standard TLS estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信