高维逼近的稀疏快速切比雪夫变换

Dalton Jones, Pierre-David Letourneau, Matthew J. Morse, M. Harper Langston
{"title":"高维逼近的稀疏快速切比雪夫变换","authors":"Dalton Jones, Pierre-David Letourneau, Matthew J. Morse, M. Harper Langston","doi":"arxiv-2309.14584","DOIUrl":null,"url":null,"abstract":"We present the Fast Chebyshev Transform (FCT), a fast, randomized algorithm\nto compute a Chebyshev approximation of functions in high-dimensions from the\nknowledge of the location of its nonzero Chebyshev coefficients. Rather than\nsampling a full-resolution Chebyshev grid in each dimension, we randomly sample\nseveral grids with varied resolutions and solve a least-squares problem in\ncoefficient space in order to compute a polynomial approximating the function\nof interest across all grids simultaneously. We theoretically and empirically\nshow that the FCT exhibits quasi-linear scaling and high numerical accuracy on\nchallenging and complex high-dimensional problems. We demonstrate the\neffectiveness of our approach compared to alternative Chebyshev approximation\nschemes. In particular, we highlight our algorithm's effectiveness in high\ndimensions, demonstrating significant speedups over commonly-used alternative\ntechniques.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"14 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sparse Fast Chebyshev Transform for High-Dimensional Approximation\",\"authors\":\"Dalton Jones, Pierre-David Letourneau, Matthew J. Morse, M. Harper Langston\",\"doi\":\"arxiv-2309.14584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the Fast Chebyshev Transform (FCT), a fast, randomized algorithm\\nto compute a Chebyshev approximation of functions in high-dimensions from the\\nknowledge of the location of its nonzero Chebyshev coefficients. Rather than\\nsampling a full-resolution Chebyshev grid in each dimension, we randomly sample\\nseveral grids with varied resolutions and solve a least-squares problem in\\ncoefficient space in order to compute a polynomial approximating the function\\nof interest across all grids simultaneously. We theoretically and empirically\\nshow that the FCT exhibits quasi-linear scaling and high numerical accuracy on\\nchallenging and complex high-dimensional problems. We demonstrate the\\neffectiveness of our approach compared to alternative Chebyshev approximation\\nschemes. In particular, we highlight our algorithm's effectiveness in high\\ndimensions, demonstrating significant speedups over commonly-used alternative\\ntechniques.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.14584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.14584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了快速切比雪夫变换(FCT),这是一种快速的随机算法,可以根据非零切比雪夫系数的位置来计算高维函数的切比雪夫近似。我们不是在每个维度上采样一个全分辨率的切比雪夫网格,而是随机采样几个具有不同分辨率的网格,并在系数空间中求解最小二乘问题,以便同时在所有网格上计算一个近似感兴趣函数的多项式。理论和经验表明,FCT在具有挑战性和复杂的高维问题上具有准线性缩放和较高的数值精度。与其他切比雪夫近似方案相比,我们证明了该方法的有效性。特别地,我们强调了我们的算法在高维上的有效性,展示了比常用替代技术显著的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sparse Fast Chebyshev Transform for High-Dimensional Approximation
We present the Fast Chebyshev Transform (FCT), a fast, randomized algorithm to compute a Chebyshev approximation of functions in high-dimensions from the knowledge of the location of its nonzero Chebyshev coefficients. Rather than sampling a full-resolution Chebyshev grid in each dimension, we randomly sample several grids with varied resolutions and solve a least-squares problem in coefficient space in order to compute a polynomial approximating the function of interest across all grids simultaneously. We theoretically and empirically show that the FCT exhibits quasi-linear scaling and high numerical accuracy on challenging and complex high-dimensional problems. We demonstrate the effectiveness of our approach compared to alternative Chebyshev approximation schemes. In particular, we highlight our algorithm's effectiveness in high dimensions, demonstrating significant speedups over commonly-used alternative techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信