在PySPOD包中解锁大规模平行光谱适当正交分解

Marcin Rogowski, Brandon C. Y. Yeung, Oliver T. Schmidt, Romit Maulik, Lisandro Dalcin, Matteo Parsani, Gianmarco Mengaldo
{"title":"在PySPOD包中解锁大规模平行光谱适当正交分解","authors":"Marcin Rogowski, Brandon C. Y. Yeung, Oliver T. Schmidt, Romit Maulik, Lisandro Dalcin, Matteo Parsani, Gianmarco Mengaldo","doi":"arxiv-2309.11808","DOIUrl":null,"url":null,"abstract":"We propose a parallel (distributed) version of the spectral proper orthogonal\ndecomposition (SPOD) technique. The parallel SPOD algorithm distributes the\nspatial dimension of the dataset preserving time. This approach is adopted to\npreserve the non-distributed fast Fourier transform of the data in time,\nthereby avoiding the associated bottlenecks. The parallel SPOD algorithm is\nimplemented in the PySPOD (https://github.com/MathEXLab/PySPOD) library and\nmakes use of the standard message passing interface (MPI) library, implemented\nin Python via mpi4py (https://mpi4py.readthedocs.io/en/stable/). An extensive\nperformance evaluation of the parallel package is provided, including strong\nand weak scalability analyses. The open-source library allows the analysis of\nlarge datasets of interest across the scientific community. Here, we present\napplications in fluid dynamics and geophysics, that are extremely difficult (if\nnot impossible) to achieve without a parallel algorithm. This work opens the\npath toward modal analyses of big quasi-stationary data, helping to uncover new\nunexplored spatio-temporal patterns.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking massively parallel spectral proper orthogonal decompositions in the PySPOD package\",\"authors\":\"Marcin Rogowski, Brandon C. Y. Yeung, Oliver T. Schmidt, Romit Maulik, Lisandro Dalcin, Matteo Parsani, Gianmarco Mengaldo\",\"doi\":\"arxiv-2309.11808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a parallel (distributed) version of the spectral proper orthogonal\\ndecomposition (SPOD) technique. The parallel SPOD algorithm distributes the\\nspatial dimension of the dataset preserving time. This approach is adopted to\\npreserve the non-distributed fast Fourier transform of the data in time,\\nthereby avoiding the associated bottlenecks. The parallel SPOD algorithm is\\nimplemented in the PySPOD (https://github.com/MathEXLab/PySPOD) library and\\nmakes use of the standard message passing interface (MPI) library, implemented\\nin Python via mpi4py (https://mpi4py.readthedocs.io/en/stable/). An extensive\\nperformance evaluation of the parallel package is provided, including strong\\nand weak scalability analyses. The open-source library allows the analysis of\\nlarge datasets of interest across the scientific community. Here, we present\\napplications in fluid dynamics and geophysics, that are extremely difficult (if\\nnot impossible) to achieve without a parallel algorithm. This work opens the\\npath toward modal analyses of big quasi-stationary data, helping to uncover new\\nunexplored spatio-temporal patterns.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.11808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.11808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个平行(分布)版本的光谱适当正交分解(SPOD)技术。并行SPOD算法对数据集的空间维数进行了分配。采用该方法可以及时保留数据的非分布快速傅里叶变换,从而避免了相关的瓶颈。并行SPOD算法在PySPOD (https://github.com/MathEXLab/PySPOD)库中实现,并使用标准消息传递接口(MPI)库,该库通过mpi4py (https://mpi4py.readthedocs.io/en/stable/)在Python中实现。对并行包进行了广泛的性能评估,包括强扩展性和弱扩展性分析。开源库允许对科学界感兴趣的大型数据集进行分析。在这里,我们介绍了流体动力学和地球物理学中的应用,如果没有并行算法,这些应用是非常困难的(如果不是不可能的话)。这项工作为大型准平稳数据的模态分析开辟了道路,有助于揭示新的未探索的时空模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking massively parallel spectral proper orthogonal decompositions in the PySPOD package
We propose a parallel (distributed) version of the spectral proper orthogonal decomposition (SPOD) technique. The parallel SPOD algorithm distributes the spatial dimension of the dataset preserving time. This approach is adopted to preserve the non-distributed fast Fourier transform of the data in time, thereby avoiding the associated bottlenecks. The parallel SPOD algorithm is implemented in the PySPOD (https://github.com/MathEXLab/PySPOD) library and makes use of the standard message passing interface (MPI) library, implemented in Python via mpi4py (https://mpi4py.readthedocs.io/en/stable/). An extensive performance evaluation of the parallel package is provided, including strong and weak scalability analyses. The open-source library allows the analysis of large datasets of interest across the scientific community. Here, we present applications in fluid dynamics and geophysics, that are extremely difficult (if not impossible) to achieve without a parallel algorithm. This work opens the path toward modal analyses of big quasi-stationary data, helping to uncover new unexplored spatio-temporal patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信