自相交曲面的框架:稳定性的对称优化

Christian Amend, Tom Goertzen
{"title":"自相交曲面的框架:稳定性的对称优化","authors":"Christian Amend, Tom Goertzen","doi":"arxiv-2312.02113","DOIUrl":null,"url":null,"abstract":"In this paper, we give a stable and efficient method for fixing\nself-intersections and non-manifold parts in a given embedded simplicial\ncomplex. In addition, we show how symmetric properties can be used for further\noptimisation. We prove an initialisation criterion for computation of the outer\nhull of an embedded simplicial complex. To regularise the outer hull of the\nretriangulated surface, we present a method to remedy non-manifold edges and\npoints. We also give a modification of the outer hull algorithm to determine\nchambers of complexes which gives rise to many new insights. All of these\nmethods have applications in many areas, for example in 3D-printing, artistic\nrealisations of 3D models or fixing errors introduced by scanning equipment\napplied for tomography. Implementations of the proposed algorithms are given in\nthe computer algebra system GAP4. For verification of our methods, we use a\ndata-set of highly self-intersecting symmetric icosahedra.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"18 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Self-Intersecting Surfaces (SOS): Symmetric Optimisation for Stability\",\"authors\":\"Christian Amend, Tom Goertzen\",\"doi\":\"arxiv-2312.02113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give a stable and efficient method for fixing\\nself-intersections and non-manifold parts in a given embedded simplicial\\ncomplex. In addition, we show how symmetric properties can be used for further\\noptimisation. We prove an initialisation criterion for computation of the outer\\nhull of an embedded simplicial complex. To regularise the outer hull of the\\nretriangulated surface, we present a method to remedy non-manifold edges and\\npoints. We also give a modification of the outer hull algorithm to determine\\nchambers of complexes which gives rise to many new insights. All of these\\nmethods have applications in many areas, for example in 3D-printing, artistic\\nrealisations of 3D models or fixing errors introduced by scanning equipment\\napplied for tomography. Implementations of the proposed algorithms are given in\\nthe computer algebra system GAP4. For verification of our methods, we use a\\ndata-set of highly self-intersecting symmetric icosahedra.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一种稳定有效的方法来固定给定嵌入的简单复合体上的自交和非流形部分。此外,我们还展示了如何使用对称属性进行进一步优化。证明了内嵌简单复合体外壳计算的一个初始化准则。为了使三角曲面的外表面规整化,提出了一种非流形边和点的修正方法。我们也给出了一种修正的外壳算法来确定复合体的腔室,这产生了许多新的见解。所有这些方法在许多领域都有应用,例如3D打印,3D模型的艺术实现或修复应用于断层扫描的扫描设备引入的错误。给出了该算法在计算机代数系统GAP4中的实现。为了验证我们的方法,我们使用了高度自相交对称二十面体的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Self-Intersecting Surfaces (SOS): Symmetric Optimisation for Stability
In this paper, we give a stable and efficient method for fixing self-intersections and non-manifold parts in a given embedded simplicial complex. In addition, we show how symmetric properties can be used for further optimisation. We prove an initialisation criterion for computation of the outer hull of an embedded simplicial complex. To regularise the outer hull of the retriangulated surface, we present a method to remedy non-manifold edges and points. We also give a modification of the outer hull algorithm to determine chambers of complexes which gives rise to many new insights. All of these methods have applications in many areas, for example in 3D-printing, artistic realisations of 3D models or fixing errors introduced by scanning equipment applied for tomography. Implementations of the proposed algorithms are given in the computer algebra system GAP4. For verification of our methods, we use a data-set of highly self-intersecting symmetric icosahedra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信