{"title":"结合显式龙格-库塔方法的多重Richardson外推的收敛性","authors":"Teshome Bayleyegn, István Faragó, Ágnes Havasi","doi":"10.1007/s10998-023-00557-y","DOIUrl":null,"url":null,"abstract":"<p>The order of accuracy of any convergent time integration method for systems of differential equations can be increased by using the sequence acceleration method known as Richardson extrapolation, as well as its variants (classical Richardson extrapolation and multiple Richardson extrapolation). The original (classical) version of Richardson extrapolation consists in taking a linear combination of numerical solutions obtained by two different time-steps with time-step sizes <i>h</i> and <i>h</i>/2 by the same numerical method. Multiple Richardson extrapolation is a generalization of this procedure, where the extrapolation is applied to the combination of some underlying numerical method and the classical Richardson extrapolation. This procedure increases the accuracy order of the underlying method from <i>p</i> to <span>\\(p+2\\)</span>, and with each repetition, the order is further increased by one. In this paper we investigate the convergence of multiple Richardson extrapolation in the case where the underlying numerical method is an explicit Runge–Kutta method, and the computational efficiency is also checked.</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"2 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the convergence of multiple Richardson extrapolation combined with explicit Runge–Kutta methods\",\"authors\":\"Teshome Bayleyegn, István Faragó, Ágnes Havasi\",\"doi\":\"10.1007/s10998-023-00557-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The order of accuracy of any convergent time integration method for systems of differential equations can be increased by using the sequence acceleration method known as Richardson extrapolation, as well as its variants (classical Richardson extrapolation and multiple Richardson extrapolation). The original (classical) version of Richardson extrapolation consists in taking a linear combination of numerical solutions obtained by two different time-steps with time-step sizes <i>h</i> and <i>h</i>/2 by the same numerical method. Multiple Richardson extrapolation is a generalization of this procedure, where the extrapolation is applied to the combination of some underlying numerical method and the classical Richardson extrapolation. This procedure increases the accuracy order of the underlying method from <i>p</i> to <span>\\\\(p+2\\\\)</span>, and with each repetition, the order is further increased by one. In this paper we investigate the convergence of multiple Richardson extrapolation in the case where the underlying numerical method is an explicit Runge–Kutta method, and the computational efficiency is also checked.</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"2 4\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00557-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00557-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the convergence of multiple Richardson extrapolation combined with explicit Runge–Kutta methods
The order of accuracy of any convergent time integration method for systems of differential equations can be increased by using the sequence acceleration method known as Richardson extrapolation, as well as its variants (classical Richardson extrapolation and multiple Richardson extrapolation). The original (classical) version of Richardson extrapolation consists in taking a linear combination of numerical solutions obtained by two different time-steps with time-step sizes h and h/2 by the same numerical method. Multiple Richardson extrapolation is a generalization of this procedure, where the extrapolation is applied to the combination of some underlying numerical method and the classical Richardson extrapolation. This procedure increases the accuracy order of the underlying method from p to \(p+2\), and with each repetition, the order is further increased by one. In this paper we investigate the convergence of multiple Richardson extrapolation in the case where the underlying numerical method is an explicit Runge–Kutta method, and the computational efficiency is also checked.
期刊介绍:
Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica.
Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.