中的限制集合的逆结果 $${\mathbb {Z}/p\mathbb {Z}}$$

IF 0.6 3区 数学 Q3 MATHEMATICS
Mario Huicochea
{"title":"中的限制集合的逆结果 $${\\mathbb {Z}/p\\mathbb {Z}}$$","authors":"Mario Huicochea","doi":"10.1007/s10998-023-00554-1","DOIUrl":null,"url":null,"abstract":"<p>Let <i>p</i> be a prime, <i>A</i> and <i>B</i> be subsets of <span>\\({\\mathbb {Z}/p\\mathbb {Z}}\\)</span> and <i>S</i> be a subset of <span>\\(A\\times B\\)</span>. We write <span>\\(A{{\\mathop {+}\\limits ^{S}}}B:=\\{a+b:\\;(a,b)\\in S\\}\\)</span>. In the first inverse result of this paper, we show that if <span>\\(\\left| A{{\\mathop {+}\\limits ^{S}}}B\\right| \\)</span> and <span>\\(|(A\\times B)\\setminus S|\\)</span> are small, then <i>A</i> has a big subset with small difference set. In the second theorem of this paper, we use the previous result to show that if <span>\\(\\left| A{{\\mathop {+}\\limits ^{S}}}B\\right| \\)</span>, |<i>A</i>| and |<i>B</i>| are small, then big parts of <i>A</i> and <i>B</i> are contained in short arithmetic progressions with the same difference. As an application of this result, we get an inverse of Pollard’s theorem.\n</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"28 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse results for restricted sumsets in $${\\\\mathbb {Z}/p\\\\mathbb {Z}}$$\",\"authors\":\"Mario Huicochea\",\"doi\":\"10.1007/s10998-023-00554-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>p</i> be a prime, <i>A</i> and <i>B</i> be subsets of <span>\\\\({\\\\mathbb {Z}/p\\\\mathbb {Z}}\\\\)</span> and <i>S</i> be a subset of <span>\\\\(A\\\\times B\\\\)</span>. We write <span>\\\\(A{{\\\\mathop {+}\\\\limits ^{S}}}B:=\\\\{a+b:\\\\;(a,b)\\\\in S\\\\}\\\\)</span>. In the first inverse result of this paper, we show that if <span>\\\\(\\\\left| A{{\\\\mathop {+}\\\\limits ^{S}}}B\\\\right| \\\\)</span> and <span>\\\\(|(A\\\\times B)\\\\setminus S|\\\\)</span> are small, then <i>A</i> has a big subset with small difference set. In the second theorem of this paper, we use the previous result to show that if <span>\\\\(\\\\left| A{{\\\\mathop {+}\\\\limits ^{S}}}B\\\\right| \\\\)</span>, |<i>A</i>| and |<i>B</i>| are small, then big parts of <i>A</i> and <i>B</i> are contained in short arithmetic progressions with the same difference. As an application of this result, we get an inverse of Pollard’s theorem.\\n</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"28 4\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-023-00554-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-023-00554-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设p是一个素数,a和B是\({\mathbb {Z}/p\mathbb {Z}}\)的子集S是\(A\times B\)的子集。我们写\(A{{\mathop {+}\limits ^{S}}}B:=\{a+b:\;(a,b)\in S\}\)。在本文的第一个反结果中,我们证明了如果\(\left| A{{\mathop {+}\limits ^{S}}}B\right| \)和\(|(A\times B)\setminus S|\)都很小,那么A有一个大的子集和小的差集。在本文的第二个定理中,我们利用前面的结果证明了如果\(\left| A{{\mathop {+}\limits ^{S}}}B\right| \), |A|和|B|都很小,那么A和B的大部分都包含在等差的短等差数列中。作为这个结果的应用,我们得到了波拉德定理的逆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse results for restricted sumsets in $${\mathbb {Z}/p\mathbb {Z}}$$

Let p be a prime, A and B be subsets of \({\mathbb {Z}/p\mathbb {Z}}\) and S be a subset of \(A\times B\). We write \(A{{\mathop {+}\limits ^{S}}}B:=\{a+b:\;(a,b)\in S\}\). In the first inverse result of this paper, we show that if \(\left| A{{\mathop {+}\limits ^{S}}}B\right| \) and \(|(A\times B)\setminus S|\) are small, then A has a big subset with small difference set. In the second theorem of this paper, we use the previous result to show that if \(\left| A{{\mathop {+}\limits ^{S}}}B\right| \), |A| and |B| are small, then big parts of A and B are contained in short arithmetic progressions with the same difference. As an application of this result, we get an inverse of Pollard’s theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica. Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信