由$(1,8)$-极化阿贝尔曲面纤维的Calabi-Yau流形的镜像对称性

IF 1.2 3区 数学 Q1 MATHEMATICS
Shinobu Hosono, Hiromichi Takagi
{"title":"由$(1,8)$-极化阿贝尔曲面纤维的Calabi-Yau流形的镜像对称性","authors":"Shinobu Hosono, Hiromichi Takagi","doi":"10.4310/cntp.2022.v16.n2.a1","DOIUrl":null,"url":null,"abstract":"We study mirror symmetry of a family of Calabi–Yau manifolds fibered by $(1,8)$-polarized abelian surfaces with Euler characteristic zero. By describing the parameter space globally, we find all expected boundary points (LCSLs), including those correspond to Fourier–Mukai partners. Applying mirror symmetry at each boundary point, we calculate Gromov–Witten invariants $(g \\leq 2)$ and observe nice (quasi-)modular properties in their potential functions. We also describe degenerations of Calabi–Yau manifolds over each boundary point.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"38 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mirror symmetry of Calabi-Yau manifolds fibered by $(1,8)$-polarized abelian surfaces\",\"authors\":\"Shinobu Hosono, Hiromichi Takagi\",\"doi\":\"10.4310/cntp.2022.v16.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study mirror symmetry of a family of Calabi–Yau manifolds fibered by $(1,8)$-polarized abelian surfaces with Euler characteristic zero. By describing the parameter space globally, we find all expected boundary points (LCSLs), including those correspond to Fourier–Mukai partners. Applying mirror symmetry at each boundary point, we calculate Gromov–Witten invariants $(g \\\\leq 2)$ and observe nice (quasi-)modular properties in their potential functions. We also describe degenerations of Calabi–Yau manifolds over each boundary point.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"38 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2022.v16.n2.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n2.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有零欧拉特征的$(1,8)$ -极化阿贝尔曲面纤维的一类Calabi-Yau流形的镜像对称性。通过全局描述参数空间,我们找到了所有期望边界点(LCSLs),包括那些对应于Fourier-Mukai伙伴的边界点。在每个边界点上应用镜像对称,我们计算了Gromov-Witten不变量$(g \leq 2)$,并观察到它们的势函数具有很好的(拟)模性质。我们还描述了Calabi-Yau流形在每个边界点上的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mirror symmetry of Calabi-Yau manifolds fibered by $(1,8)$-polarized abelian surfaces
We study mirror symmetry of a family of Calabi–Yau manifolds fibered by $(1,8)$-polarized abelian surfaces with Euler characteristic zero. By describing the parameter space globally, we find all expected boundary points (LCSLs), including those correspond to Fourier–Mukai partners. Applying mirror symmetry at each boundary point, we calculate Gromov–Witten invariants $(g \leq 2)$ and observe nice (quasi-)modular properties in their potential functions. We also describe degenerations of Calabi–Yau manifolds over each boundary point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信