{"title":"由$(1,8)$-极化阿贝尔曲面纤维的Calabi-Yau流形的镜像对称性","authors":"Shinobu Hosono, Hiromichi Takagi","doi":"10.4310/cntp.2022.v16.n2.a1","DOIUrl":null,"url":null,"abstract":"We study mirror symmetry of a family of Calabi–Yau manifolds fibered by $(1,8)$-polarized abelian surfaces with Euler characteristic zero. By describing the parameter space globally, we find all expected boundary points (LCSLs), including those correspond to Fourier–Mukai partners. Applying mirror symmetry at each boundary point, we calculate Gromov–Witten invariants $(g \\leq 2)$ and observe nice (quasi-)modular properties in their potential functions. We also describe degenerations of Calabi–Yau manifolds over each boundary point.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mirror symmetry of Calabi-Yau manifolds fibered by $(1,8)$-polarized abelian surfaces\",\"authors\":\"Shinobu Hosono, Hiromichi Takagi\",\"doi\":\"10.4310/cntp.2022.v16.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study mirror symmetry of a family of Calabi–Yau manifolds fibered by $(1,8)$-polarized abelian surfaces with Euler characteristic zero. By describing the parameter space globally, we find all expected boundary points (LCSLs), including those correspond to Fourier–Mukai partners. Applying mirror symmetry at each boundary point, we calculate Gromov–Witten invariants $(g \\\\leq 2)$ and observe nice (quasi-)modular properties in their potential functions. We also describe degenerations of Calabi–Yau manifolds over each boundary point.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2022.v16.n2.a1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n2.a1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mirror symmetry of Calabi-Yau manifolds fibered by $(1,8)$-polarized abelian surfaces
We study mirror symmetry of a family of Calabi–Yau manifolds fibered by $(1,8)$-polarized abelian surfaces with Euler characteristic zero. By describing the parameter space globally, we find all expected boundary points (LCSLs), including those correspond to Fourier–Mukai partners. Applying mirror symmetry at each boundary point, we calculate Gromov–Witten invariants $(g \leq 2)$ and observe nice (quasi-)modular properties in their potential functions. We also describe degenerations of Calabi–Yau manifolds over each boundary point.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.