{"title":"作为Polyakov路径积分的模参数化:以CM椭圆曲线为目标空间的情况","authors":"Satoshi Kondo, Taizan Watari","doi":"10.4310/cntp.2022.v16.n2.a3","DOIUrl":null,"url":null,"abstract":"For an elliptic curve $E$ over an abelian extension $k/K$ with CM by $K$ of Shimura type, the L-functions of its $[k:K]$ Galois representations are Mellin transforms of Hecke theta functions; a modular parametrization (surjective map) from a modular curve to $E$ pulls back the $1$-forms on $E$ to give the Hecke theta functions. This article refines the study of our earlier work and shows that certain class of chiral correlation functions in Type II string theory with $[E]_\\mathbb{C}$ ($E$ as real analytic manifold) as a target space yield the same Hecke theta functions as objects on the modular curve. The Kähler parameter of the target space $[E]_\\mathbb{C}$ in string theory plays the role of the index (partially ordered) set in defining the projective/direct limit of modular curves.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"39 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular parametrization as Polyakov path integral: cases with CM elliptic curves as target spaces\",\"authors\":\"Satoshi Kondo, Taizan Watari\",\"doi\":\"10.4310/cntp.2022.v16.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an elliptic curve $E$ over an abelian extension $k/K$ with CM by $K$ of Shimura type, the L-functions of its $[k:K]$ Galois representations are Mellin transforms of Hecke theta functions; a modular parametrization (surjective map) from a modular curve to $E$ pulls back the $1$-forms on $E$ to give the Hecke theta functions. This article refines the study of our earlier work and shows that certain class of chiral correlation functions in Type II string theory with $[E]_\\\\mathbb{C}$ ($E$ as real analytic manifold) as a target space yield the same Hecke theta functions as objects on the modular curve. The Kähler parameter of the target space $[E]_\\\\mathbb{C}$ in string theory plays the role of the index (partially ordered) set in defining the projective/direct limit of modular curves.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"39 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2022.v16.n2.a3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n2.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于具有CM × k的Shimura型椭圆曲线$E$在阿贝尔扩展$k/ k $上,其$[k: k]$伽罗瓦表示的l -函数是Hecke函数的Mellin变换;从模曲线到$E$的模参数化(满射映射)将$E$上的$1$-形式拉回以得到Hecke函数。本文对前人的研究进行了改进,证明了一类以$[E]_\mathbb{C}$ ($E$为实解析流形)为目标空间的II型弦理论中的手性相关函数与模曲线上的对象产生相同的Hecke函数。弦理论中目标空间$[E]_\mathbb{C}$的Kähler参数在定义模曲线的射影/直极限时起着索引(偏序)集的作用。
Modular parametrization as Polyakov path integral: cases with CM elliptic curves as target spaces
For an elliptic curve $E$ over an abelian extension $k/K$ with CM by $K$ of Shimura type, the L-functions of its $[k:K]$ Galois representations are Mellin transforms of Hecke theta functions; a modular parametrization (surjective map) from a modular curve to $E$ pulls back the $1$-forms on $E$ to give the Hecke theta functions. This article refines the study of our earlier work and shows that certain class of chiral correlation functions in Type II string theory with $[E]_\mathbb{C}$ ($E$ as real analytic manifold) as a target space yield the same Hecke theta functions as objects on the modular curve. The Kähler parameter of the target space $[E]_\mathbb{C}$ in string theory plays the role of the index (partially ordered) set in defining the projective/direct limit of modular curves.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.