{"title":"作为Polyakov路径积分的模参数化:以CM椭圆曲线为目标空间的情况","authors":"Satoshi Kondo, Taizan Watari","doi":"10.4310/cntp.2022.v16.n2.a3","DOIUrl":null,"url":null,"abstract":"For an elliptic curve $E$ over an abelian extension $k/K$ with CM by $K$ of Shimura type, the L-functions of its $[k:K]$ Galois representations are Mellin transforms of Hecke theta functions; a modular parametrization (surjective map) from a modular curve to $E$ pulls back the $1$-forms on $E$ to give the Hecke theta functions. This article refines the study of our earlier work and shows that certain class of chiral correlation functions in Type II string theory with $[E]_\\mathbb{C}$ ($E$ as real analytic manifold) as a target space yield the same Hecke theta functions as objects on the modular curve. The Kähler parameter of the target space $[E]_\\mathbb{C}$ in string theory plays the role of the index (partially ordered) set in defining the projective/direct limit of modular curves.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular parametrization as Polyakov path integral: cases with CM elliptic curves as target spaces\",\"authors\":\"Satoshi Kondo, Taizan Watari\",\"doi\":\"10.4310/cntp.2022.v16.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an elliptic curve $E$ over an abelian extension $k/K$ with CM by $K$ of Shimura type, the L-functions of its $[k:K]$ Galois representations are Mellin transforms of Hecke theta functions; a modular parametrization (surjective map) from a modular curve to $E$ pulls back the $1$-forms on $E$ to give the Hecke theta functions. This article refines the study of our earlier work and shows that certain class of chiral correlation functions in Type II string theory with $[E]_\\\\mathbb{C}$ ($E$ as real analytic manifold) as a target space yield the same Hecke theta functions as objects on the modular curve. The Kähler parameter of the target space $[E]_\\\\mathbb{C}$ in string theory plays the role of the index (partially ordered) set in defining the projective/direct limit of modular curves.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2022.v16.n2.a3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n2.a3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
对于具有CM × k的Shimura型椭圆曲线$E$在阿贝尔扩展$k/ k $上,其$[k: k]$伽罗瓦表示的l -函数是Hecke函数的Mellin变换;从模曲线到$E$的模参数化(满射映射)将$E$上的$1$-形式拉回以得到Hecke函数。本文对前人的研究进行了改进,证明了一类以$[E]_\mathbb{C}$ ($E$为实解析流形)为目标空间的II型弦理论中的手性相关函数与模曲线上的对象产生相同的Hecke函数。弦理论中目标空间$[E]_\mathbb{C}$的Kähler参数在定义模曲线的射影/直极限时起着索引(偏序)集的作用。
Modular parametrization as Polyakov path integral: cases with CM elliptic curves as target spaces
For an elliptic curve $E$ over an abelian extension $k/K$ with CM by $K$ of Shimura type, the L-functions of its $[k:K]$ Galois representations are Mellin transforms of Hecke theta functions; a modular parametrization (surjective map) from a modular curve to $E$ pulls back the $1$-forms on $E$ to give the Hecke theta functions. This article refines the study of our earlier work and shows that certain class of chiral correlation functions in Type II string theory with $[E]_\mathbb{C}$ ($E$ as real analytic manifold) as a target space yield the same Hecke theta functions as objects on the modular curve. The Kähler parameter of the target space $[E]_\mathbb{C}$ in string theory plays the role of the index (partially ordered) set in defining the projective/direct limit of modular curves.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.