{"title":"丢番图方程的和立方和立方的和","authors":"Bogdan A. Dobrescu, Patrick J. Fox","doi":"10.4310/cntp.2022.v16.n2.a4","DOIUrl":null,"url":null,"abstract":"We solve Diophantine equations of the type $a(x^3+y^3+z^3)=(x+y+z)^3$, where $x$, $y$, $z$ are integer variables, and the coefficient $a \\neq 0$ is rational. We show that there are infinite families of such equations, including those where $a$ is any cube or certain rational fractions, that have nontrivial solutions. There are also infinite families of equations that do not have any nontrivial solution, including those where $1/a=1-24/m$ with restrictions on the integer $m$. The equations can be represented by elliptic curves unless $a=9$ or $1$, and any elliptic curve of nonzero $j$-invariant and torsion group $\\mathbb{Z}/3k\\mathbb{Z}$ for $k=2,3,4$, or $\\mathbb{Z}/2\\mathbb{Z} \\times \\mathbb{Z}/6\\mathbb{Z}$ corresponds to a particular $a$. We prove that for any $a$ the number of nontrivial solutions is at most $3$ or is infinite, and for integer $a$ it is either $0$ or $\\infty$. For $a=9$, we find the general solution, which depends on two integer parameters. These cubic equations are important in particle physics, because they determine the fermion charges under the $U(1)$ gauge group.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diophantine equations with sum of cubes and cube of sum\",\"authors\":\"Bogdan A. Dobrescu, Patrick J. Fox\",\"doi\":\"10.4310/cntp.2022.v16.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve Diophantine equations of the type $a(x^3+y^3+z^3)=(x+y+z)^3$, where $x$, $y$, $z$ are integer variables, and the coefficient $a \\\\neq 0$ is rational. We show that there are infinite families of such equations, including those where $a$ is any cube or certain rational fractions, that have nontrivial solutions. There are also infinite families of equations that do not have any nontrivial solution, including those where $1/a=1-24/m$ with restrictions on the integer $m$. The equations can be represented by elliptic curves unless $a=9$ or $1$, and any elliptic curve of nonzero $j$-invariant and torsion group $\\\\mathbb{Z}/3k\\\\mathbb{Z}$ for $k=2,3,4$, or $\\\\mathbb{Z}/2\\\\mathbb{Z} \\\\times \\\\mathbb{Z}/6\\\\mathbb{Z}$ corresponds to a particular $a$. We prove that for any $a$ the number of nontrivial solutions is at most $3$ or is infinite, and for integer $a$ it is either $0$ or $\\\\infty$. For $a=9$, we find the general solution, which depends on two integer parameters. These cubic equations are important in particle physics, because they determine the fermion charges under the $U(1)$ gauge group.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2022.v16.n2.a4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n2.a4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Diophantine equations with sum of cubes and cube of sum
We solve Diophantine equations of the type $a(x^3+y^3+z^3)=(x+y+z)^3$, where $x$, $y$, $z$ are integer variables, and the coefficient $a \neq 0$ is rational. We show that there are infinite families of such equations, including those where $a$ is any cube or certain rational fractions, that have nontrivial solutions. There are also infinite families of equations that do not have any nontrivial solution, including those where $1/a=1-24/m$ with restrictions on the integer $m$. The equations can be represented by elliptic curves unless $a=9$ or $1$, and any elliptic curve of nonzero $j$-invariant and torsion group $\mathbb{Z}/3k\mathbb{Z}$ for $k=2,3,4$, or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ corresponds to a particular $a$. We prove that for any $a$ the number of nontrivial solutions is at most $3$ or is infinite, and for integer $a$ it is either $0$ or $\infty$. For $a=9$, we find the general solution, which depends on two integer parameters. These cubic equations are important in particle physics, because they determine the fermion charges under the $U(1)$ gauge group.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.