丢番图方程的和立方和立方的和

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bogdan A. Dobrescu, Patrick J. Fox
{"title":"丢番图方程的和立方和立方的和","authors":"Bogdan A. Dobrescu, Patrick J. Fox","doi":"10.4310/cntp.2022.v16.n2.a4","DOIUrl":null,"url":null,"abstract":"We solve Diophantine equations of the type $a(x^3+y^3+z^3)=(x+y+z)^3$, where $x$, $y$, $z$ are integer variables, and the coefficient $a \\neq 0$ is rational. We show that there are infinite families of such equations, including those where $a$ is any cube or certain rational fractions, that have nontrivial solutions. There are also infinite families of equations that do not have any nontrivial solution, including those where $1/a=1-24/m$ with restrictions on the integer $m$. The equations can be represented by elliptic curves unless $a=9$ or $1$, and any elliptic curve of nonzero $j$-invariant and torsion group $\\mathbb{Z}/3k\\mathbb{Z}$ for $k=2,3,4$, or $\\mathbb{Z}/2\\mathbb{Z} \\times \\mathbb{Z}/6\\mathbb{Z}$ corresponds to a particular $a$. We prove that for any $a$ the number of nontrivial solutions is at most $3$ or is infinite, and for integer $a$ it is either $0$ or $\\infty$. For $a=9$, we find the general solution, which depends on two integer parameters. These cubic equations are important in particle physics, because they determine the fermion charges under the $U(1)$ gauge group.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diophantine equations with sum of cubes and cube of sum\",\"authors\":\"Bogdan A. Dobrescu, Patrick J. Fox\",\"doi\":\"10.4310/cntp.2022.v16.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We solve Diophantine equations of the type $a(x^3+y^3+z^3)=(x+y+z)^3$, where $x$, $y$, $z$ are integer variables, and the coefficient $a \\\\neq 0$ is rational. We show that there are infinite families of such equations, including those where $a$ is any cube or certain rational fractions, that have nontrivial solutions. There are also infinite families of equations that do not have any nontrivial solution, including those where $1/a=1-24/m$ with restrictions on the integer $m$. The equations can be represented by elliptic curves unless $a=9$ or $1$, and any elliptic curve of nonzero $j$-invariant and torsion group $\\\\mathbb{Z}/3k\\\\mathbb{Z}$ for $k=2,3,4$, or $\\\\mathbb{Z}/2\\\\mathbb{Z} \\\\times \\\\mathbb{Z}/6\\\\mathbb{Z}$ corresponds to a particular $a$. We prove that for any $a$ the number of nontrivial solutions is at most $3$ or is infinite, and for integer $a$ it is either $0$ or $\\\\infty$. For $a=9$, we find the general solution, which depends on two integer parameters. These cubic equations are important in particle physics, because they determine the fermion charges under the $U(1)$ gauge group.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2022.v16.n2.a4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n2.a4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们求解类型为$a(x^3+y^3+z^3)=(x+y+z)^3$的丢芬图方程,其中$x$, $y$, $z$为整数变量,系数$a \neq 0$为有理数。我们证明有无限的这样的方程族,包括$a$是任意立方体或某些有理数的方程族,它们具有非平凡解。也有无限的方程族没有任何非平凡解,包括那些$1/a=1-24/m$对整数$m$有限制的方程族。方程可以用椭圆曲线表示,除非$a=9$或$1$,对于$k=2,3,4$或$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$,任何非零的$j$ -不变量和扭转群$\mathbb{Z}/3k\mathbb{Z}$的椭圆曲线对应于一个特定的$a$。证明了对于任意$a$,非平凡解的个数不超过$3$或无穷大,对于整数$a$,非平凡解的个数不超过$0$或$\infty$。对于$a=9$,我们找到了通解,它依赖于两个整数参数。这些三次方程在粒子物理学中很重要,因为它们决定了$U(1)$规范群下的费米子电荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diophantine equations with sum of cubes and cube of sum
We solve Diophantine equations of the type $a(x^3+y^3+z^3)=(x+y+z)^3$, where $x$, $y$, $z$ are integer variables, and the coefficient $a \neq 0$ is rational. We show that there are infinite families of such equations, including those where $a$ is any cube or certain rational fractions, that have nontrivial solutions. There are also infinite families of equations that do not have any nontrivial solution, including those where $1/a=1-24/m$ with restrictions on the integer $m$. The equations can be represented by elliptic curves unless $a=9$ or $1$, and any elliptic curve of nonzero $j$-invariant and torsion group $\mathbb{Z}/3k\mathbb{Z}$ for $k=2,3,4$, or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ corresponds to a particular $a$. We prove that for any $a$ the number of nontrivial solutions is at most $3$ or is infinite, and for integer $a$ it is either $0$ or $\infty$. For $a=9$, we find the general solution, which depends on two integer parameters. These cubic equations are important in particle physics, because they determine the fermion charges under the $U(1)$ gauge group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信