球节模浸的Haefliger方法

Pub Date : 2023-10-04 DOI:10.4310/hha.2023.v25.n2.a4
Neeti Gauniyal
{"title":"球节模浸的Haefliger方法","authors":"Neeti Gauniyal","doi":"10.4310/hha.2023.v25.n2.a4","DOIUrl":null,"url":null,"abstract":"$\\def\\Emb{\\overline{Emb}}$We show that for the spaces of spherical embeddings modulo immersions $\\Emb (S^n, S^{n+q})$ and long embeddings modulo immersions $\\Emb_\\partial (D^n, D^{n+q})$, the set of connected components is isomorphic to $\\pi_{n+1} (SG, SG_q)$ for $q \\geqslant 3$. As a consequence, we show that all the terms of the long exact sequence of the triad $(SG; SO, SG_q)$ have a geometric meaning relating to spherical embeddings and immersions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Haefliger’s approach for spherical knots modulo immersions\",\"authors\":\"Neeti Gauniyal\",\"doi\":\"10.4310/hha.2023.v25.n2.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$\\\\def\\\\Emb{\\\\overline{Emb}}$We show that for the spaces of spherical embeddings modulo immersions $\\\\Emb (S^n, S^{n+q})$ and long embeddings modulo immersions $\\\\Emb_\\\\partial (D^n, D^{n+q})$, the set of connected components is isomorphic to $\\\\pi_{n+1} (SG, SG_q)$ for $q \\\\geqslant 3$. As a consequence, we show that all the terms of the long exact sequence of the triad $(SG; SO, SG_q)$ have a geometric meaning relating to spherical embeddings and immersions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2023.v25.n2.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$\def\Emb{\overline{Emb}}$我们证明了对于球面嵌入模浸入$\Emb (S^n, S^{n+q})$和长嵌入模浸入$\Emb_\partial (D^n, D^{n+q})$的空间,对于$q \geqslant 3$,连通分量集同构于$\pi_{n+1} (SG, SG_q)$。因此,我们证明了三元组$(SG; SO, SG_q)$的长精确序列的所有项都具有与球面嵌入和浸入有关的几何意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Haefliger’s approach for spherical knots modulo immersions
$\def\Emb{\overline{Emb}}$We show that for the spaces of spherical embeddings modulo immersions $\Emb (S^n, S^{n+q})$ and long embeddings modulo immersions $\Emb_\partial (D^n, D^{n+q})$, the set of connected components is isomorphic to $\pi_{n+1} (SG, SG_q)$ for $q \geqslant 3$. As a consequence, we show that all the terms of the long exact sequence of the triad $(SG; SO, SG_q)$ have a geometric meaning relating to spherical embeddings and immersions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信