{"title":"在$\\ mathm {G}_2 (p)$的Sylow $p$-子群上饱和聚变系统的锐性","authors":"Valentina Grazian, Ettore Marmo","doi":"10.4310/hha.2023.v25.n2.a14","DOIUrl":null,"url":null,"abstract":"We prove that the Díaz–Park sharpness conjecture holds for saturated fusion systems defined on a Sylow $p$-subgroup of the group $\\mathrm{G}_2 (p)$, for $p \\geqslant 5$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharpness of saturated fusion systems on a Sylow $p$-subgroup of $\\\\mathrm{G}_2 (p)$\",\"authors\":\"Valentina Grazian, Ettore Marmo\",\"doi\":\"10.4310/hha.2023.v25.n2.a14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the Díaz–Park sharpness conjecture holds for saturated fusion systems defined on a Sylow $p$-subgroup of the group $\\\\mathrm{G}_2 (p)$, for $p \\\\geqslant 5$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2023.v25.n2.a14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sharpness of saturated fusion systems on a Sylow $p$-subgroup of $\mathrm{G}_2 (p)$
We prove that the Díaz–Park sharpness conjecture holds for saturated fusion systems defined on a Sylow $p$-subgroup of the group $\mathrm{G}_2 (p)$, for $p \geqslant 5$.