秩$2$标志流形的自由循环空间的上同调

Pub Date : 2023-11-22 DOI:10.4310/hha.2023.v25.n2.a15
Matthew Burfitt, Jelena Grbić
{"title":"秩$2$标志流形的自由循环空间的上同调","authors":"Matthew Burfitt, Jelena Grbić","doi":"10.4310/hha.2023.v25.n2.a15","DOIUrl":null,"url":null,"abstract":"By applying Gröbner basis theory to spectral sequences algebras, we develop a new computational methodology applicable to any Leray–Serre spectral sequence for which the cohomology of the base space is the quotient of a finitely generated polynomial algebra. We demonstrate the procedure by deducing the cohomology of the free loop space of flag manifolds, presenting a significant extension over previous knowledge of the topology of free loop spaces. A complete flag manifold is the quotient of a Lie group by its maximal torus. The rank of a flag manifold is the dimension of the maximal torus of the Lie group. The rank $2$ complete flag manifolds are $SU(3)/T^2$, $Sp(2)/T^2$, $\\mathit{Spin}(4)/T^2$, $\\mathit{Spin}(5)/T^2$ and $G_2/T^2$. In this paper we calculate the cohomology of the free loop space of the rank $2$ complete flag manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The cohomology of free loop spaces of rank $2$ flag manifolds\",\"authors\":\"Matthew Burfitt, Jelena Grbić\",\"doi\":\"10.4310/hha.2023.v25.n2.a15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By applying Gröbner basis theory to spectral sequences algebras, we develop a new computational methodology applicable to any Leray–Serre spectral sequence for which the cohomology of the base space is the quotient of a finitely generated polynomial algebra. We demonstrate the procedure by deducing the cohomology of the free loop space of flag manifolds, presenting a significant extension over previous knowledge of the topology of free loop spaces. A complete flag manifold is the quotient of a Lie group by its maximal torus. The rank of a flag manifold is the dimension of the maximal torus of the Lie group. The rank $2$ complete flag manifolds are $SU(3)/T^2$, $Sp(2)/T^2$, $\\\\mathit{Spin}(4)/T^2$, $\\\\mathit{Spin}(5)/T^2$ and $G_2/T^2$. In this paper we calculate the cohomology of the free loop space of the rank $2$ complete flag manifolds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2023.v25.n2.a15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过将Gröbner基理论应用于谱序列代数,我们开发了一种新的计算方法,适用于任何Leray-Serre谱序列,其中基空间的上同调是有限生成多项式代数的商。我们通过推导标志流形的自由环空间的上同调来证明这一过程,对以前关于自由环空间拓扑的知识进行了重要的扩展。完备标志流形是李群与其最大环面之商。标志流形的秩是李群的最大环面的维数。等级2美元完成标志集合管是SU (3) / T ^ 2美元,Sp (2) / T ^ 2美元,美元\ mathit{旋转}(4)/ T ^ 2美元,美元\ mathit{旋转}(5)/ T ^ 2美元和G_2 / T ^ 2美元。本文计算了秩$2$完备标志流形的自由环空间的上同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The cohomology of free loop spaces of rank $2$ flag manifolds
By applying Gröbner basis theory to spectral sequences algebras, we develop a new computational methodology applicable to any Leray–Serre spectral sequence for which the cohomology of the base space is the quotient of a finitely generated polynomial algebra. We demonstrate the procedure by deducing the cohomology of the free loop space of flag manifolds, presenting a significant extension over previous knowledge of the topology of free loop spaces. A complete flag manifold is the quotient of a Lie group by its maximal torus. The rank of a flag manifold is the dimension of the maximal torus of the Lie group. The rank $2$ complete flag manifolds are $SU(3)/T^2$, $Sp(2)/T^2$, $\mathit{Spin}(4)/T^2$, $\mathit{Spin}(5)/T^2$ and $G_2/T^2$. In this paper we calculate the cohomology of the free loop space of the rank $2$ complete flag manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信