{"title":"真实格拉斯曼流形的K理论","authors":"Sudeep Podder, Parameswaran Sankaran","doi":"10.4310/hha.2023.v25.n2.a17","DOIUrl":null,"url":null,"abstract":"Let $G_{n,k}$ denote the real Grassmann manifold of $k$-dimensional vector subspaces of $\\mathbb{R}^n$. We compute the complex $K$-ring of $G_{n,k}\\:$, up to a small indeterminacy, for all values of $n,k$ where $2 \\leqslant k \\leqslant n - 2$. When $n \\equiv 0 (\\operatorname{mod} 4), k \\equiv 1 (\\operatorname{mod} 2)$, we use the Hodgkin spectral sequence to determine the $K$-ring completely.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$K$-theory of real Grassmann manifolds\",\"authors\":\"Sudeep Podder, Parameswaran Sankaran\",\"doi\":\"10.4310/hha.2023.v25.n2.a17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G_{n,k}$ denote the real Grassmann manifold of $k$-dimensional vector subspaces of $\\\\mathbb{R}^n$. We compute the complex $K$-ring of $G_{n,k}\\\\:$, up to a small indeterminacy, for all values of $n,k$ where $2 \\\\leqslant k \\\\leqslant n - 2$. When $n \\\\equiv 0 (\\\\operatorname{mod} 4), k \\\\equiv 1 (\\\\operatorname{mod} 2)$, we use the Hodgkin spectral sequence to determine the $K$-ring completely.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2023.v25.n2.a17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设$G_{n,k}$表示$\mathbb{R}^n$的$k$维向量子空间的实Grassmann流形。我们计算了$G_{n,k}\:$的复杂$K$ -环,直到一个小的不确定性,对于$n,k$的所有值,其中$2 \leqslant k \leqslant n - 2$。当$n \equiv 0 (\operatorname{mod} 4), k \equiv 1 (\operatorname{mod} 2)$时,我们使用霍奇金谱序列完全确定$K$ -环。
Let $G_{n,k}$ denote the real Grassmann manifold of $k$-dimensional vector subspaces of $\mathbb{R}^n$. We compute the complex $K$-ring of $G_{n,k}\:$, up to a small indeterminacy, for all values of $n,k$ where $2 \leqslant k \leqslant n - 2$. When $n \equiv 0 (\operatorname{mod} 4), k \equiv 1 (\operatorname{mod} 2)$, we use the Hodgkin spectral sequence to determine the $K$-ring completely.