真实格拉斯曼流形的K理论

Pub Date : 2023-11-22 DOI:10.4310/hha.2023.v25.n2.a17
Sudeep Podder, Parameswaran Sankaran
{"title":"真实格拉斯曼流形的K理论","authors":"Sudeep Podder, Parameswaran Sankaran","doi":"10.4310/hha.2023.v25.n2.a17","DOIUrl":null,"url":null,"abstract":"Let $G_{n,k}$ denote the real Grassmann manifold of $k$-dimensional vector subspaces of $\\mathbb{R}^n$. We compute the complex $K$-ring of $G_{n,k}\\:$, up to a small indeterminacy, for all values of $n,k$ where $2 \\leqslant k \\leqslant n - 2$. When $n \\equiv 0 (\\operatorname{mod} 4), k \\equiv 1 (\\operatorname{mod} 2)$, we use the Hodgkin spectral sequence to determine the $K$-ring completely.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$K$-theory of real Grassmann manifolds\",\"authors\":\"Sudeep Podder, Parameswaran Sankaran\",\"doi\":\"10.4310/hha.2023.v25.n2.a17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G_{n,k}$ denote the real Grassmann manifold of $k$-dimensional vector subspaces of $\\\\mathbb{R}^n$. We compute the complex $K$-ring of $G_{n,k}\\\\:$, up to a small indeterminacy, for all values of $n,k$ where $2 \\\\leqslant k \\\\leqslant n - 2$. When $n \\\\equiv 0 (\\\\operatorname{mod} 4), k \\\\equiv 1 (\\\\operatorname{mod} 2)$, we use the Hodgkin spectral sequence to determine the $K$-ring completely.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2023.v25.n2.a17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2023.v25.n2.a17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$G_{n,k}$表示$\mathbb{R}^n$的$k$维向量子空间的实Grassmann流形。我们计算了$G_{n,k}\:$的复杂$K$ -环,直到一个小的不确定性,对于$n,k$的所有值,其中$2 \leqslant k \leqslant n - 2$。当$n \equiv 0 (\operatorname{mod} 4), k \equiv 1 (\operatorname{mod} 2)$时,我们使用霍奇金谱序列完全确定$K$ -环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
$K$-theory of real Grassmann manifolds
Let $G_{n,k}$ denote the real Grassmann manifold of $k$-dimensional vector subspaces of $\mathbb{R}^n$. We compute the complex $K$-ring of $G_{n,k}\:$, up to a small indeterminacy, for all values of $n,k$ where $2 \leqslant k \leqslant n - 2$. When $n \equiv 0 (\operatorname{mod} 4), k \equiv 1 (\operatorname{mod} 2)$, we use the Hodgkin spectral sequence to determine the $K$-ring completely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信