$1$-smooth pro-$p$组和Bloch-Kato pro-$p$组

Pub Date : 2022-08-10 DOI:10.4310/hha.2022.v24.n2.a3
Claudio Quadrelli
{"title":"$1$-smooth pro-$p$组和Bloch-Kato pro-$p$组","authors":"Claudio Quadrelli","doi":"10.4310/hha.2022.v24.n2.a3","DOIUrl":null,"url":null,"abstract":"Let $p$ be a prime. A pro‑$p$ group $G$ is said to be $1$-smooth if it can be endowed with a homomorphism of pro‑$p$ groups of the form $G \\to 1 + p \\mathbb{Z}_p$ satisfying a formal version of Hilbert 90. By Kummer theory, maximal pro‑$p$ Galois groups of fields containing a root of $1$ of order $p$, together with the cyclotomic character, are $1$-smooth. We prove that a finitely generated padic analytic pro‑$p$ group is $1$-smooth if, and only if, it occurs as the maximal pro‑$p$ Galois group of a field containing a root of $1$ of order $p$. This gives a positive answer to De Clercq–Florence’s “Smoothness Conjecture” — which states that the surjectivity of the norm residue homomorphism (i.e., the “surjective half” of the Bloch–Kato Conjecture) follows from $1$-smoothness — for the class of finitely generated $p$-adic analytic pro‑$p$ groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$1$-smooth pro-$p$ groups and Bloch–Kato pro-$p$ groups\",\"authors\":\"Claudio Quadrelli\",\"doi\":\"10.4310/hha.2022.v24.n2.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be a prime. A pro‑$p$ group $G$ is said to be $1$-smooth if it can be endowed with a homomorphism of pro‑$p$ groups of the form $G \\\\to 1 + p \\\\mathbb{Z}_p$ satisfying a formal version of Hilbert 90. By Kummer theory, maximal pro‑$p$ Galois groups of fields containing a root of $1$ of order $p$, together with the cyclotomic character, are $1$-smooth. We prove that a finitely generated padic analytic pro‑$p$ group is $1$-smooth if, and only if, it occurs as the maximal pro‑$p$ Galois group of a field containing a root of $1$ of order $p$. This gives a positive answer to De Clercq–Florence’s “Smoothness Conjecture” — which states that the surjectivity of the norm residue homomorphism (i.e., the “surjective half” of the Bloch–Kato Conjecture) follows from $1$-smoothness — for the class of finitely generated $p$-adic analytic pro‑$p$ groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/hha.2022.v24.n2.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2022.v24.n2.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设p是素数。一个亲$p$群$G$是$1$-光滑的,如果它能被赋予一个形式为$G \到1 + p \mathbb{Z}_p$的亲$p$群的同态,满足Hilbert 90的正式版本。根据Kummer理论,包含$p$阶$1$根的域的极大pro - $p$伽罗瓦群,与切环性一起,是$1$-光滑的。证明了一个有限生成的解析pro - $p$群是$1$光滑的,当且仅当它是一个包含$p$阶的$1$根的域的最大pro - $p$伽罗瓦群。这对De Clercq-Florence的“光滑猜想”给出了一个肯定的回答,该猜想指出,对于有限生成的$p$-进解析亲$p$群,范数剩余同态的满射性(即Bloch-Kato猜想的“满射一半”)从$1$-光滑开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
$1$-smooth pro-$p$ groups and Bloch–Kato pro-$p$ groups
Let $p$ be a prime. A pro‑$p$ group $G$ is said to be $1$-smooth if it can be endowed with a homomorphism of pro‑$p$ groups of the form $G \to 1 + p \mathbb{Z}_p$ satisfying a formal version of Hilbert 90. By Kummer theory, maximal pro‑$p$ Galois groups of fields containing a root of $1$ of order $p$, together with the cyclotomic character, are $1$-smooth. We prove that a finitely generated padic analytic pro‑$p$ group is $1$-smooth if, and only if, it occurs as the maximal pro‑$p$ Galois group of a field containing a root of $1$ of order $p$. This gives a positive answer to De Clercq–Florence’s “Smoothness Conjecture” — which states that the surjectivity of the norm residue homomorphism (i.e., the “surjective half” of the Bloch–Kato Conjecture) follows from $1$-smoothness — for the class of finitely generated $p$-adic analytic pro‑$p$ groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信