{"title":"逻辑程序比例","authors":"Christian Antić","doi":"10.1007/s10472-023-09904-8","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to present a fresh idea on how symbolic learning might be realized via analogical reasoning. For this, we introduce directed analogical proportions between logic programs of the form “<i>P</i> transforms into <i>Q</i> as <i>R</i> transforms into <i>S</i>” as a mechanism for deriving similar programs by analogy-making. The idea is to instantiate a fragment of a recently introduced abstract algebraic framework of analogical proportions in the domain of logic programming. Technically, we define proportions in terms of modularity where we derive abstract forms of concrete programs from a “known” source domain which can then be instantiated in an “unknown” target domain to obtain analogous programs. To this end, we introduce algebraic operations for syntactic logic program composition and concatenation. Interestingly, our work suggests a close relationship between modularity, generalization, and analogy which we believe should be explored further in the future. In a broader sense, this paper is a further step towards a mathematical theory of logic-based analogical reasoning and learning with potential applications to open AI-problems like commonsense reasoning and computational learning and creativity.</p>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"24 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Logic program proportions\",\"authors\":\"Christian Antić\",\"doi\":\"10.1007/s10472-023-09904-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The purpose of this paper is to present a fresh idea on how symbolic learning might be realized via analogical reasoning. For this, we introduce directed analogical proportions between logic programs of the form “<i>P</i> transforms into <i>Q</i> as <i>R</i> transforms into <i>S</i>” as a mechanism for deriving similar programs by analogy-making. The idea is to instantiate a fragment of a recently introduced abstract algebraic framework of analogical proportions in the domain of logic programming. Technically, we define proportions in terms of modularity where we derive abstract forms of concrete programs from a “known” source domain which can then be instantiated in an “unknown” target domain to obtain analogous programs. To this end, we introduce algebraic operations for syntactic logic program composition and concatenation. Interestingly, our work suggests a close relationship between modularity, generalization, and analogy which we believe should be explored further in the future. In a broader sense, this paper is a further step towards a mathematical theory of logic-based analogical reasoning and learning with potential applications to open AI-problems like commonsense reasoning and computational learning and creativity.</p>\",\"PeriodicalId\":7971,\"journal\":{\"name\":\"Annals of Mathematics and Artificial Intelligence\",\"volume\":\"24 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10472-023-09904-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10472-023-09904-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The purpose of this paper is to present a fresh idea on how symbolic learning might be realized via analogical reasoning. For this, we introduce directed analogical proportions between logic programs of the form “P transforms into Q as R transforms into S” as a mechanism for deriving similar programs by analogy-making. The idea is to instantiate a fragment of a recently introduced abstract algebraic framework of analogical proportions in the domain of logic programming. Technically, we define proportions in terms of modularity where we derive abstract forms of concrete programs from a “known” source domain which can then be instantiated in an “unknown” target domain to obtain analogous programs. To this end, we introduce algebraic operations for syntactic logic program composition and concatenation. Interestingly, our work suggests a close relationship between modularity, generalization, and analogy which we believe should be explored further in the future. In a broader sense, this paper is a further step towards a mathematical theory of logic-based analogical reasoning and learning with potential applications to open AI-problems like commonsense reasoning and computational learning and creativity.
期刊介绍:
Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning.
The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors.
Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.