{"title":"马德兰兰科特有植物叶蕨的空间遗传结构","authors":"Mikael Hedren","doi":"10.1007/s00606-022-01822-2","DOIUrl":null,"url":null,"abstract":"<p>Oceanic islands have isolated biota, which typically include many endemic species. However, island endemics are vulnerable due to small population sizes, and they are often threatened by habitat destruction or by introduced pests and predators. Adequate conservation planning requires good information on genetic variability and population structure, also when seemingly viable species are considered. Here, I analysed the genetic structure in the terrestrial orchid <i>Dactylorhiza foliosa</i>, which is endemic to Madeira. This species is a characteristic component of evergreen laurel forests occupying the northern slopes of the island. Levels of diversity in both the plastid genome and in the nuclear genome were comparable to levels of diversity found in congeners growing in continental regions. Within populations, plants separated by distances up to 256 m shared plastid haplotypes significantly more often than plants at random, but when nuclear markers were considered, only plants growing closer than eight metres were significantly more closely related. Analysis of plastid marker variation revealed that gene dispersal by seeds is not sufficiently large to counterbalance the accumulation of mutations that build up divergence between the most distant populations. However, differentiation in the nuclear genome was considerably smaller, suggesting that gene dispersal by pollen is much more efficient than gene dispersal by seeds in <i>D. foliosa</i>. The overall pollen to seed dispersal ratio, <i>mp/ms</i>, was 7.30. Considering genetic parameters, conditions for long-term persistence of <i>D. foliosa</i> on Madeira seem to be good.</p>","PeriodicalId":20187,"journal":{"name":"Plant Systematics and Evolution","volume":"24 11","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatial genetic structure in the Madeiran endemic Dactylorhiza foliosa (Orchidaceae)\",\"authors\":\"Mikael Hedren\",\"doi\":\"10.1007/s00606-022-01822-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oceanic islands have isolated biota, which typically include many endemic species. However, island endemics are vulnerable due to small population sizes, and they are often threatened by habitat destruction or by introduced pests and predators. Adequate conservation planning requires good information on genetic variability and population structure, also when seemingly viable species are considered. Here, I analysed the genetic structure in the terrestrial orchid <i>Dactylorhiza foliosa</i>, which is endemic to Madeira. This species is a characteristic component of evergreen laurel forests occupying the northern slopes of the island. Levels of diversity in both the plastid genome and in the nuclear genome were comparable to levels of diversity found in congeners growing in continental regions. Within populations, plants separated by distances up to 256 m shared plastid haplotypes significantly more often than plants at random, but when nuclear markers were considered, only plants growing closer than eight metres were significantly more closely related. Analysis of plastid marker variation revealed that gene dispersal by seeds is not sufficiently large to counterbalance the accumulation of mutations that build up divergence between the most distant populations. However, differentiation in the nuclear genome was considerably smaller, suggesting that gene dispersal by pollen is much more efficient than gene dispersal by seeds in <i>D. foliosa</i>. The overall pollen to seed dispersal ratio, <i>mp/ms</i>, was 7.30. Considering genetic parameters, conditions for long-term persistence of <i>D. foliosa</i> on Madeira seem to be good.</p>\",\"PeriodicalId\":20187,\"journal\":{\"name\":\"Plant Systematics and Evolution\",\"volume\":\"24 11\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Systematics and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00606-022-01822-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Systematics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00606-022-01822-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Spatial genetic structure in the Madeiran endemic Dactylorhiza foliosa (Orchidaceae)
Oceanic islands have isolated biota, which typically include many endemic species. However, island endemics are vulnerable due to small population sizes, and they are often threatened by habitat destruction or by introduced pests and predators. Adequate conservation planning requires good information on genetic variability and population structure, also when seemingly viable species are considered. Here, I analysed the genetic structure in the terrestrial orchid Dactylorhiza foliosa, which is endemic to Madeira. This species is a characteristic component of evergreen laurel forests occupying the northern slopes of the island. Levels of diversity in both the plastid genome and in the nuclear genome were comparable to levels of diversity found in congeners growing in continental regions. Within populations, plants separated by distances up to 256 m shared plastid haplotypes significantly more often than plants at random, but when nuclear markers were considered, only plants growing closer than eight metres were significantly more closely related. Analysis of plastid marker variation revealed that gene dispersal by seeds is not sufficiently large to counterbalance the accumulation of mutations that build up divergence between the most distant populations. However, differentiation in the nuclear genome was considerably smaller, suggesting that gene dispersal by pollen is much more efficient than gene dispersal by seeds in D. foliosa. The overall pollen to seed dispersal ratio, mp/ms, was 7.30. Considering genetic parameters, conditions for long-term persistence of D. foliosa on Madeira seem to be good.
期刊介绍:
Plant Systematics and Evolution is an international journal dedicated to publication of peer-reviewed original papers and reviews on plant systematics in the broadest sense. The journal aims to bridge the specific subject areas in plant systematics and evolution, encompassing evolutionary, phylogenetic, genomic and biogeographical studies at the population and higher taxonomic levels. Taxonomic emphasis is on all land plant groups in a wide sense, including fungi and lichens.