{"title":"单向流动中帽贝壳上流体力的参数化","authors":"Carley Walker, Julian Simeonov, Ian Adams","doi":"10.1007/s10596-023-10263-w","DOIUrl":null,"url":null,"abstract":"<p>Current parameterizations of the hydrodynamic forces on irregular particles consider some shape dependencies, but lack an explicit dependence on the orientation with respect to the flow. In this paper, we propose a new parameterization of the drag and lift forces acting on whole Limpet shells at arbitrary orientations with respect to the direction of flow through the linear regression of fluid forces against the velocity components in an object frame of reference. The fluid forces were estimated using boundary layer-resolving Reynolds-averaged Navier-Stokes (RANS) simulations. We verified the accuracy of the shear stress transport (SST) <span>\\(k-\\omega \\)</span> turbulence model on flat plates with varying angles of attack, and we achieved coefficients of determination versus existing data of approximately 0.95 for both the drag and lift coefficients. From the linear regression of our simulated force data, we developed a model as a function of 3-dimensional orientations to predict the hydrodynamic forces acting on a Limpet shell with coefficients of determination of 0.80 for normal forces and 0.51 for longitudinal forces.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"28 7","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterizing the fluid forces on limpet shells in unidirectional flow\",\"authors\":\"Carley Walker, Julian Simeonov, Ian Adams\",\"doi\":\"10.1007/s10596-023-10263-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current parameterizations of the hydrodynamic forces on irregular particles consider some shape dependencies, but lack an explicit dependence on the orientation with respect to the flow. In this paper, we propose a new parameterization of the drag and lift forces acting on whole Limpet shells at arbitrary orientations with respect to the direction of flow through the linear regression of fluid forces against the velocity components in an object frame of reference. The fluid forces were estimated using boundary layer-resolving Reynolds-averaged Navier-Stokes (RANS) simulations. We verified the accuracy of the shear stress transport (SST) <span>\\\\(k-\\\\omega \\\\)</span> turbulence model on flat plates with varying angles of attack, and we achieved coefficients of determination versus existing data of approximately 0.95 for both the drag and lift coefficients. From the linear regression of our simulated force data, we developed a model as a function of 3-dimensional orientations to predict the hydrodynamic forces acting on a Limpet shell with coefficients of determination of 0.80 for normal forces and 0.51 for longitudinal forces.</p>\",\"PeriodicalId\":10662,\"journal\":{\"name\":\"Computational Geosciences\",\"volume\":\"28 7\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10596-023-10263-w\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-023-10263-w","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Parameterizing the fluid forces on limpet shells in unidirectional flow
Current parameterizations of the hydrodynamic forces on irregular particles consider some shape dependencies, but lack an explicit dependence on the orientation with respect to the flow. In this paper, we propose a new parameterization of the drag and lift forces acting on whole Limpet shells at arbitrary orientations with respect to the direction of flow through the linear regression of fluid forces against the velocity components in an object frame of reference. The fluid forces were estimated using boundary layer-resolving Reynolds-averaged Navier-Stokes (RANS) simulations. We verified the accuracy of the shear stress transport (SST) \(k-\omega \) turbulence model on flat plates with varying angles of attack, and we achieved coefficients of determination versus existing data of approximately 0.95 for both the drag and lift coefficients. From the linear regression of our simulated force data, we developed a model as a function of 3-dimensional orientations to predict the hydrodynamic forces acting on a Limpet shell with coefficients of determination of 0.80 for normal forces and 0.51 for longitudinal forces.
期刊介绍:
Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing.
Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered.
The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.