{"title":"基于CdS/ZnS球形量子点的发光器件的制备","authors":"Kobra Hasanirokh, Asghar Asgari, Saber Mohammadi","doi":"10.1186/s41476-021-00173-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we focus on the colloidal quantum dot based light-emitting diodes (QD-LEDs) performance. First, we synthesize the spherical QDs with a CdS core that covered with a wider band gap II–VI semiconductor acting as a shell (ZnS). In order to synthesize this nano crystal QDs with structure of CdS/ZnS/CdS/ZnS, we use a reverse micelle process. These four-layer quantum well quantum dots (QWQDs) can generate the white light emission. The positional design of different layers i.e., core/shell QD emitters is a critical factor for white emissive devices. The blue emission generated by CdS core mixes with green/orange components originating from ZnS inner shell and creates an efficiency white light emission. Then, we fabricate a white-QDLED with a device structure of FTO/ ZnO / QD / CBP/ MoO<sub>3</sub> / Al films. A thin film of CdS/ZnS/CdS/ZnS QDs is deposited by electrostatically assembled colloidal QD solutions. The experimental results show that the emission spectra of QDs and current density through the LED are controlled by varying the particle sizes. The peaks of absorbance and Photoluminescence (PL) spectrums for core/shell structures get the red shifted as the dot size increases. Furthermore, this QD-LED with a smaller nano particle layer has a higher current density.</p></div>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":"17 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jeos.springeropen.com/counter/pdf/10.1186/s41476-021-00173-8","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a light-emitting device based on the CdS/ZnS spherical quantum dots\",\"authors\":\"Kobra Hasanirokh, Asghar Asgari, Saber Mohammadi\",\"doi\":\"10.1186/s41476-021-00173-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we focus on the colloidal quantum dot based light-emitting diodes (QD-LEDs) performance. First, we synthesize the spherical QDs with a CdS core that covered with a wider band gap II–VI semiconductor acting as a shell (ZnS). In order to synthesize this nano crystal QDs with structure of CdS/ZnS/CdS/ZnS, we use a reverse micelle process. These four-layer quantum well quantum dots (QWQDs) can generate the white light emission. The positional design of different layers i.e., core/shell QD emitters is a critical factor for white emissive devices. The blue emission generated by CdS core mixes with green/orange components originating from ZnS inner shell and creates an efficiency white light emission. Then, we fabricate a white-QDLED with a device structure of FTO/ ZnO / QD / CBP/ MoO<sub>3</sub> / Al films. A thin film of CdS/ZnS/CdS/ZnS QDs is deposited by electrostatically assembled colloidal QD solutions. The experimental results show that the emission spectra of QDs and current density through the LED are controlled by varying the particle sizes. The peaks of absorbance and Photoluminescence (PL) spectrums for core/shell structures get the red shifted as the dot size increases. Furthermore, this QD-LED with a smaller nano particle layer has a higher current density.</p></div>\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jeos.springeropen.com/counter/pdf/10.1186/s41476-021-00173-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41476-021-00173-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-021-00173-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Fabrication of a light-emitting device based on the CdS/ZnS spherical quantum dots
In this work, we focus on the colloidal quantum dot based light-emitting diodes (QD-LEDs) performance. First, we synthesize the spherical QDs with a CdS core that covered with a wider band gap II–VI semiconductor acting as a shell (ZnS). In order to synthesize this nano crystal QDs with structure of CdS/ZnS/CdS/ZnS, we use a reverse micelle process. These four-layer quantum well quantum dots (QWQDs) can generate the white light emission. The positional design of different layers i.e., core/shell QD emitters is a critical factor for white emissive devices. The blue emission generated by CdS core mixes with green/orange components originating from ZnS inner shell and creates an efficiency white light emission. Then, we fabricate a white-QDLED with a device structure of FTO/ ZnO / QD / CBP/ MoO3 / Al films. A thin film of CdS/ZnS/CdS/ZnS QDs is deposited by electrostatically assembled colloidal QD solutions. The experimental results show that the emission spectra of QDs and current density through the LED are controlled by varying the particle sizes. The peaks of absorbance and Photoluminescence (PL) spectrums for core/shell structures get the red shifted as the dot size increases. Furthermore, this QD-LED with a smaller nano particle layer has a higher current density.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.