基于CdS/ZnS球形量子点的发光器件的制备

IF 1.9 4区 物理与天体物理 Q3 OPTICS
Kobra Hasanirokh, Asghar Asgari, Saber Mohammadi
{"title":"基于CdS/ZnS球形量子点的发光器件的制备","authors":"Kobra Hasanirokh,&nbsp;Asghar Asgari,&nbsp;Saber Mohammadi","doi":"10.1186/s41476-021-00173-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we focus on the colloidal quantum dot based light-emitting diodes (QD-LEDs) performance. First, we synthesize the spherical QDs with a CdS core that covered with a wider band gap II–VI semiconductor acting as a shell (ZnS). In order to synthesize this nano crystal QDs with structure of CdS/ZnS/CdS/ZnS, we use a reverse micelle process. These four-layer quantum well quantum dots (QWQDs) can generate the white light emission. The positional design of different layers i.e., core/shell QD emitters is a critical factor for white emissive devices. The blue emission generated by CdS core mixes with green/orange components originating from ZnS inner shell and creates an efficiency white light emission. Then, we fabricate a white-QDLED with a device structure of FTO/ ZnO / QD / CBP/ MoO<sub>3</sub> / Al films. A thin film of CdS/ZnS/CdS/ZnS QDs is deposited by electrostatically assembled colloidal QD solutions. The experimental results show that the emission spectra of QDs and current density through the LED are controlled by varying the particle sizes. The peaks of absorbance and Photoluminescence (PL) spectrums for core/shell structures get the red shifted as the dot size increases. Furthermore, this QD-LED with a smaller nano particle layer has a higher current density.</p></div>","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jeos.springeropen.com/counter/pdf/10.1186/s41476-021-00173-8","citationCount":"0","resultStr":"{\"title\":\"Fabrication of a light-emitting device based on the CdS/ZnS spherical quantum dots\",\"authors\":\"Kobra Hasanirokh,&nbsp;Asghar Asgari,&nbsp;Saber Mohammadi\",\"doi\":\"10.1186/s41476-021-00173-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we focus on the colloidal quantum dot based light-emitting diodes (QD-LEDs) performance. First, we synthesize the spherical QDs with a CdS core that covered with a wider band gap II–VI semiconductor acting as a shell (ZnS). In order to synthesize this nano crystal QDs with structure of CdS/ZnS/CdS/ZnS, we use a reverse micelle process. These four-layer quantum well quantum dots (QWQDs) can generate the white light emission. The positional design of different layers i.e., core/shell QD emitters is a critical factor for white emissive devices. The blue emission generated by CdS core mixes with green/orange components originating from ZnS inner shell and creates an efficiency white light emission. Then, we fabricate a white-QDLED with a device structure of FTO/ ZnO / QD / CBP/ MoO<sub>3</sub> / Al films. A thin film of CdS/ZnS/CdS/ZnS QDs is deposited by electrostatically assembled colloidal QD solutions. The experimental results show that the emission spectra of QDs and current density through the LED are controlled by varying the particle sizes. The peaks of absorbance and Photoluminescence (PL) spectrums for core/shell structures get the red shifted as the dot size increases. Furthermore, this QD-LED with a smaller nano particle layer has a higher current density.</p></div>\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jeos.springeropen.com/counter/pdf/10.1186/s41476-021-00173-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41476-021-00173-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1186/s41476-021-00173-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们重点研究了基于胶体量子点的发光二极管(qd - led)的性能。首先,我们合成了球形量子点,其中CdS核心覆盖有更宽的带隙II-VI半导体作为壳层(ZnS)。为了合成具有CdS/ZnS/CdS/ZnS结构的纳米晶体量子点,我们采用了反胶束工艺。这些四层量子阱量子点(QWQDs)可以产生白光。不同层的位置设计,即核/壳QD发射器是白光发射器件的关键因素。CdS芯产生的蓝色发光与源自ZnS内壳的绿色/橙色发光混合,产生高效的白光发光。然后,我们制作了FTO/ ZnO / QD / CBP/ MoO3 / Al薄膜器件结构的白色qdled。采用静电组装的胶体量子点溶液沉积了CdS/ZnS/CdS/ZnS量子点薄膜。实验结果表明,通过改变粒子尺寸可以控制量子点的发射光谱和电流密度。核/壳结构的吸光度峰和光致发光(PL)光谱随着点尺寸的增大而发生红移。此外,该量子二极管具有更小的纳米粒子层,具有更高的电流密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of a light-emitting device based on the CdS/ZnS spherical quantum dots

In this work, we focus on the colloidal quantum dot based light-emitting diodes (QD-LEDs) performance. First, we synthesize the spherical QDs with a CdS core that covered with a wider band gap II–VI semiconductor acting as a shell (ZnS). In order to synthesize this nano crystal QDs with structure of CdS/ZnS/CdS/ZnS, we use a reverse micelle process. These four-layer quantum well quantum dots (QWQDs) can generate the white light emission. The positional design of different layers i.e., core/shell QD emitters is a critical factor for white emissive devices. The blue emission generated by CdS core mixes with green/orange components originating from ZnS inner shell and creates an efficiency white light emission. Then, we fabricate a white-QDLED with a device structure of FTO/ ZnO / QD / CBP/ MoO3 / Al films. A thin film of CdS/ZnS/CdS/ZnS QDs is deposited by electrostatically assembled colloidal QD solutions. The experimental results show that the emission spectra of QDs and current density through the LED are controlled by varying the particle sizes. The peaks of absorbance and Photoluminescence (PL) spectrums for core/shell structures get the red shifted as the dot size increases. Furthermore, this QD-LED with a smaller nano particle layer has a higher current density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
12
审稿时长
5 weeks
期刊介绍: Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry. Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research. The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics. The journal covers both fundamental and applied topics, including but not limited to: Classical and quantum optics Light/matter interaction Optical communication Micro- and nanooptics Nonlinear optical phenomena Optical materials Optical metrology Optical spectroscopy Colour research Nano and metamaterials Modern photonics technology Optical engineering, design and instrumentation Optical applications in bio-physics and medicine Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信