Ricelli M. S. Ramos, Danielle S. Monteiro, Ivandré Paraboni
{"title":"自然语言生成系统中基于个性的内容选择","authors":"Ricelli M. S. Ramos, Danielle S. Monteiro, Ivandré Paraboni","doi":"10.1186/s13173-020-00096-1","DOIUrl":null,"url":null,"abstract":"This paper focuses on the computer side of human-computer interaction through natural language, which is the domain of natural language generation (NLG) studies. From a given (usually non-linguistic) input, NLG systems will in principle generate the same fixed text as an output and in order to attain more natural or human-like interaction will often resort to a wide range of strategies for stylistic variation. Among these, the use of computational models of human personality has emerged as a popular alternative in the field and will be the focus of the present work as well. More specifically, the present study describes two machine learning experiments to establish possible relations between personality and content selection (as opposed to the more well-documented relation between personality and surface realisation), and it is, to the best of our knowledge, the first of its kind to address this issue at both macro and micro planning levels, which may arguably pave the way for the future development of more robust personality-dependent systems of this kind.","PeriodicalId":39760,"journal":{"name":"Journal of the Brazilian Computer Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Personality-dependent content selection in natural language generation systems\",\"authors\":\"Ricelli M. S. Ramos, Danielle S. Monteiro, Ivandré Paraboni\",\"doi\":\"10.1186/s13173-020-00096-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the computer side of human-computer interaction through natural language, which is the domain of natural language generation (NLG) studies. From a given (usually non-linguistic) input, NLG systems will in principle generate the same fixed text as an output and in order to attain more natural or human-like interaction will often resort to a wide range of strategies for stylistic variation. Among these, the use of computational models of human personality has emerged as a popular alternative in the field and will be the focus of the present work as well. More specifically, the present study describes two machine learning experiments to establish possible relations between personality and content selection (as opposed to the more well-documented relation between personality and surface realisation), and it is, to the best of our knowledge, the first of its kind to address this issue at both macro and micro planning levels, which may arguably pave the way for the future development of more robust personality-dependent systems of this kind.\",\"PeriodicalId\":39760,\"journal\":{\"name\":\"Journal of the Brazilian Computer Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Brazilian Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13173-020-00096-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Brazilian Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13173-020-00096-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Personality-dependent content selection in natural language generation systems
This paper focuses on the computer side of human-computer interaction through natural language, which is the domain of natural language generation (NLG) studies. From a given (usually non-linguistic) input, NLG systems will in principle generate the same fixed text as an output and in order to attain more natural or human-like interaction will often resort to a wide range of strategies for stylistic variation. Among these, the use of computational models of human personality has emerged as a popular alternative in the field and will be the focus of the present work as well. More specifically, the present study describes two machine learning experiments to establish possible relations between personality and content selection (as opposed to the more well-documented relation between personality and surface realisation), and it is, to the best of our knowledge, the first of its kind to address this issue at both macro and micro planning levels, which may arguably pave the way for the future development of more robust personality-dependent systems of this kind.
期刊介绍:
JBCS is a formal quarterly publication of the Brazilian Computer Society. It is a peer-reviewed international journal which aims to serve as a forum to disseminate innovative research in all fields of computer science and related subjects. Theoretical, practical and experimental papers reporting original research contributions are welcome, as well as high quality survey papers. The journal is open to contributions in all computer science topics, computer systems development or in formal and theoretical aspects of computing, as the list of topics below is not exhaustive. Contributions will be considered for publication in JBCS if they have not been published previously and are not under consideration for publication elsewhere.