Zorich映射的Julia集的爆炸点和拓扑

Pub Date : 2022-07-05 DOI:10.1007/s40315-022-00458-0
Athanasios Tsantaris
{"title":"Zorich映射的Julia集的爆炸点和拓扑","authors":"Athanasios Tsantaris","doi":"10.1007/s40315-022-00458-0","DOIUrl":null,"url":null,"abstract":"<p>Zorich maps are higher dimensional analogues of the complex exponential map. For the exponential family <span>\\(\\lambda e^z\\)</span>, <span>\\(\\lambda &gt;0\\)</span>, it is known that for small values of <span>\\(\\lambda \\)</span> the Julia set is an uncountable collection of disjoint curves. The same was shown to hold for Zorich maps by Bergweiler and Nicks. In this paper we introduce a topological model for the Julia sets of certain Zorich maps, similar to the so called <i>straight brush</i> of Aarts and Oversteegen. As a corollary we show that <span>\\(\\infty \\)</span> is an <i>explosion point</i> for the set of endpoints of the Julia sets. Moreover we introduce an object called a <i>hairy surface</i> which is a compactified version of the Julia set of Zorich maps and we show that those objects are not uniquely embedded in <span>\\(\\mathbb {R}^3\\)</span>, unlike the corresponding two dimensional objects which are all ambiently homeomorphic.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Explosion Points and Topology of Julia Sets of Zorich Maps\",\"authors\":\"Athanasios Tsantaris\",\"doi\":\"10.1007/s40315-022-00458-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Zorich maps are higher dimensional analogues of the complex exponential map. For the exponential family <span>\\\\(\\\\lambda e^z\\\\)</span>, <span>\\\\(\\\\lambda &gt;0\\\\)</span>, it is known that for small values of <span>\\\\(\\\\lambda \\\\)</span> the Julia set is an uncountable collection of disjoint curves. The same was shown to hold for Zorich maps by Bergweiler and Nicks. In this paper we introduce a topological model for the Julia sets of certain Zorich maps, similar to the so called <i>straight brush</i> of Aarts and Oversteegen. As a corollary we show that <span>\\\\(\\\\infty \\\\)</span> is an <i>explosion point</i> for the set of endpoints of the Julia sets. Moreover we introduce an object called a <i>hairy surface</i> which is a compactified version of the Julia set of Zorich maps and we show that those objects are not uniquely embedded in <span>\\\\(\\\\mathbb {R}^3\\\\)</span>, unlike the corresponding two dimensional objects which are all ambiently homeomorphic.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-022-00458-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-022-00458-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Zorich图是复指数图的高维类似物。对于指数族\(\lambda e^z\), \(\lambda >0\),已知对于\(\lambda \)的小值,Julia集是不相交曲线的不可数集合。Bergweiler和Nicks的Zorich地图也证明了这一点。本文引入了一类Zorich映射的Julia集的拓扑模型,类似于Aarts和Oversteegen的直刷。作为推论,我们证明\(\infty \)是Julia集合端点集合的一个爆炸点。此外,我们引入了一个被称为毛状表面的对象,它是Zorich映射的Julia集的紧化版本,我们证明了这些对象不是唯一嵌入\(\mathbb {R}^3\)的,不像相应的二维对象,它们都是环境同胚的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Explosion Points and Topology of Julia Sets of Zorich Maps

分享
查看原文
Explosion Points and Topology of Julia Sets of Zorich Maps

Zorich maps are higher dimensional analogues of the complex exponential map. For the exponential family \(\lambda e^z\), \(\lambda >0\), it is known that for small values of \(\lambda \) the Julia set is an uncountable collection of disjoint curves. The same was shown to hold for Zorich maps by Bergweiler and Nicks. In this paper we introduce a topological model for the Julia sets of certain Zorich maps, similar to the so called straight brush of Aarts and Oversteegen. As a corollary we show that \(\infty \) is an explosion point for the set of endpoints of the Julia sets. Moreover we introduce an object called a hairy surface which is a compactified version of the Julia set of Zorich maps and we show that those objects are not uniquely embedded in \(\mathbb {R}^3\), unlike the corresponding two dimensional objects which are all ambiently homeomorphic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信