带截尾数据的半参数模式回归

IF 0.8 Q3 STATISTICS & PROBABILITY
S. Khardani
{"title":"带截尾数据的半参数模式回归","authors":"S. Khardani","doi":"10.3103/s1066530719010034","DOIUrl":null,"url":null,"abstract":"In this work we suppose that the random vector (<i>X</i>, <i>Y</i>) satisfies the regression model <i>Y</i> = <i>m</i>(<i>X</i>) + <i>ϵ</i>, where <i>m</i>(·) belongs to some parametric class {<span>\\({m_\\beta}(\\cdot):\\beta \\in \\mathbb{K}\\)</span>} and the error <i>ϵ</i> is independent of the covariate <i>X</i>. The response <i>Y</i> is subject to random right censoring. Using a nonlinear mode regression, a new estimation procedure for the true unknown parameter vector <i>β</i><sub>0</sub>is proposed that extends the classical least squares procedure for nonlinear regression. We also establish asymptotic properties for the proposed estimator under assumptions of the error density. We investigate the performance through a simulation study.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Semi-Parametric Mode Regression with Censored Data\",\"authors\":\"S. Khardani\",\"doi\":\"10.3103/s1066530719010034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we suppose that the random vector (<i>X</i>, <i>Y</i>) satisfies the regression model <i>Y</i> = <i>m</i>(<i>X</i>) + <i>ϵ</i>, where <i>m</i>(·) belongs to some parametric class {<span>\\\\({m_\\\\beta}(\\\\cdot):\\\\beta \\\\in \\\\mathbb{K}\\\\)</span>} and the error <i>ϵ</i> is independent of the covariate <i>X</i>. The response <i>Y</i> is subject to random right censoring. Using a nonlinear mode regression, a new estimation procedure for the true unknown parameter vector <i>β</i><sub>0</sub>is proposed that extends the classical least squares procedure for nonlinear regression. We also establish asymptotic properties for the proposed estimator under assumptions of the error density. We investigate the performance through a simulation study.\",\"PeriodicalId\":46039,\"journal\":{\"name\":\"Mathematical Methods of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066530719010034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530719010034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们假设随机向量(X, Y)满足回归模型Y = m(X) + λ,其中m(·)属于某个参数类{\({m_\beta}(\cdot):\beta \in \mathbb{K}\)},并且误差λ独立于协变量X。响应Y受到随机右删减。利用非线性模态回归,提出了一种新的真未知参数向量β0的估计方法,扩展了经典的非线性回归最小二乘估计方法。在误差密度的假设下,我们还建立了所提估计量的渐近性质。我们通过仿真研究来考察其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Semi-Parametric Mode Regression with Censored Data
In this work we suppose that the random vector (X, Y) satisfies the regression model Y = m(X) + ϵ, where m(·) belongs to some parametric class {\({m_\beta}(\cdot):\beta \in \mathbb{K}\)} and the error ϵ is independent of the covariate X. The response Y is subject to random right censoring. Using a nonlinear mode regression, a new estimation procedure for the true unknown parameter vector β0is proposed that extends the classical least squares procedure for nonlinear regression. We also establish asymptotic properties for the proposed estimator under assumptions of the error density. We investigate the performance through a simulation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Methods of Statistics
Mathematical Methods of Statistics STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: Mathematical Methods of Statistics  is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信