{"title":"有离群值的自回归中局部选择下Pearson检验的威力","authors":"M. V. Boldin","doi":"10.3103/s1066530719010046","DOIUrl":null,"url":null,"abstract":"We consider a stationary linear <i>AR</i>(<i>p</i>) model with contamination (gross errors in the observations). The autoregression parameters are unknown, as well as the distribution of innovations. Based on the residuals from the parameter estimates, an analog of the empirical distribution function is defined and a test of Pearson’s chi-square type is constructed for testing hypotheses on the distribution of innovations. We obtain the asymptotic power of this test under local alternatives and establish its qualitative robustness under the hypothesis and alternatives.","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the Power of Pearson’s Test under Local Alternatives in Autoregression with Outliers\",\"authors\":\"M. V. Boldin\",\"doi\":\"10.3103/s1066530719010046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a stationary linear <i>AR</i>(<i>p</i>) model with contamination (gross errors in the observations). The autoregression parameters are unknown, as well as the distribution of innovations. Based on the residuals from the parameter estimates, an analog of the empirical distribution function is defined and a test of Pearson’s chi-square type is constructed for testing hypotheses on the distribution of innovations. We obtain the asymptotic power of this test under local alternatives and establish its qualitative robustness under the hypothesis and alternatives.\",\"PeriodicalId\":46039,\"journal\":{\"name\":\"Mathematical Methods of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066530719010046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530719010046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On the Power of Pearson’s Test under Local Alternatives in Autoregression with Outliers
We consider a stationary linear AR(p) model with contamination (gross errors in the observations). The autoregression parameters are unknown, as well as the distribution of innovations. Based on the residuals from the parameter estimates, an analog of the empirical distribution function is defined and a test of Pearson’s chi-square type is constructed for testing hypotheses on the distribution of innovations. We obtain the asymptotic power of this test under local alternatives and establish its qualitative robustness under the hypothesis and alternatives.
期刊介绍:
Mathematical Methods of Statistics is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.