{"title":"改进了DE-Sinc近似的网格大小和截断数选择公式及其理论误差界","authors":"Tomoaki Okayama, Shota Ogawa","doi":"10.1007/s13160-023-00634-2","DOIUrl":null,"url":null,"abstract":"<p>The Sinc approximation applied to double-exponentially decaying functions is referred to as the DE-Sinc approximation. Because of its high efficiency, this method has been used in various applications. In the Sinc approximation, the mesh size and truncation numbers should be optimally selected to achieve its best performance. However, the standard selection formula has only been “near-optimally” selected because the optimal formula of the mesh size cannot be expressed in terms of elementary functions of truncation numbers. In this study, we propose two improved selection formulas. The first one is based on the concept by an earlier research that resulted in a better selection formula for the double-exponential formula. The formula performs slightly better than the standard one, but is still not optimal. As a second selection formula, we introduce a new parameter to propose truly optimal selection formula. We provide explicit error bounds for both selection formulas. Numerical comparisons show that the first formula gives a better error bound than the standard formula, and the second formula gives a much better error bound than the standard and first formulas.</p>","PeriodicalId":50264,"journal":{"name":"Japan Journal of Industrial and Applied Mathematics","volume":"491 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of selection formulas of mesh size and truncation numbers for the DE-Sinc approximation and its theoretical error bound\",\"authors\":\"Tomoaki Okayama, Shota Ogawa\",\"doi\":\"10.1007/s13160-023-00634-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Sinc approximation applied to double-exponentially decaying functions is referred to as the DE-Sinc approximation. Because of its high efficiency, this method has been used in various applications. In the Sinc approximation, the mesh size and truncation numbers should be optimally selected to achieve its best performance. However, the standard selection formula has only been “near-optimally” selected because the optimal formula of the mesh size cannot be expressed in terms of elementary functions of truncation numbers. In this study, we propose two improved selection formulas. The first one is based on the concept by an earlier research that resulted in a better selection formula for the double-exponential formula. The formula performs slightly better than the standard one, but is still not optimal. As a second selection formula, we introduce a new parameter to propose truly optimal selection formula. We provide explicit error bounds for both selection formulas. Numerical comparisons show that the first formula gives a better error bound than the standard formula, and the second formula gives a much better error bound than the standard and first formulas.</p>\",\"PeriodicalId\":50264,\"journal\":{\"name\":\"Japan Journal of Industrial and Applied Mathematics\",\"volume\":\"491 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Journal of Industrial and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13160-023-00634-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Journal of Industrial and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13160-023-00634-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Improvement of selection formulas of mesh size and truncation numbers for the DE-Sinc approximation and its theoretical error bound
The Sinc approximation applied to double-exponentially decaying functions is referred to as the DE-Sinc approximation. Because of its high efficiency, this method has been used in various applications. In the Sinc approximation, the mesh size and truncation numbers should be optimally selected to achieve its best performance. However, the standard selection formula has only been “near-optimally” selected because the optimal formula of the mesh size cannot be expressed in terms of elementary functions of truncation numbers. In this study, we propose two improved selection formulas. The first one is based on the concept by an earlier research that resulted in a better selection formula for the double-exponential formula. The formula performs slightly better than the standard one, but is still not optimal. As a second selection formula, we introduce a new parameter to propose truly optimal selection formula. We provide explicit error bounds for both selection formulas. Numerical comparisons show that the first formula gives a better error bound than the standard formula, and the second formula gives a much better error bound than the standard and first formulas.
期刊介绍:
Japan Journal of Industrial and Applied Mathematics (JJIAM) is intended to provide an international forum for the expression of new ideas, as well as a site for the presentation of original research in various fields of the mathematical sciences. Consequently the most welcome types of articles are those which provide new insights into and methods for mathematical structures of various phenomena in the natural, social and industrial sciences, those which link real-world phenomena and mathematics through modeling and analysis, and those which impact the development of the mathematical sciences. The scope of the journal covers applied mathematical analysis, computational techniques and industrial mathematics.