{"title":"三时间尺度系统中折叠极限环流形的几何爆破","authors":"S. Jelbart, C. Kuehn, S.-V. Kuntz","doi":"10.1007/s00332-023-09987-x","DOIUrl":null,"url":null,"abstract":"<p><i>Geometric singular perturbation theory</i> provides a powerful mathematical framework for the analysis of ‘stationary’ multiple time-scale systems which possess a <i>critical manifold</i>, i.e. a smooth manifold of steady states for the limiting fast subsystem, particularly when combined with a method of desingularisation known as <i>blow-up</i>. The theory for ‘oscillatory’ multiple time-scale systems which possess a limit cycle manifold instead of (or in addition to) a critical manifold is less developed, particularly in the non-normally hyperbolic regime. We use the blow-up method to analyse the global oscillatory transition near a regular folded limit cycle manifold in a class of three time-scale ‘semi-oscillatory’ systems with two small parameters. The systems considered behave like oscillatory systems as the smallest perturbation parameter tends to zero, and stationary systems as both perturbation parameters tend to zero. The additional time-scale structure is crucial for the applicability of the blow-up method, which cannot be applied directly to the two time-scale oscillatory counterpart of the problem. Our methods allow us to describe the asymptotics and strong contractivity of all solutions which traverse a neighbourhood of the global singularity. Our main results cover a range of different cases with respect to the relative time-scale of the angular dynamics and the parameter drift. We demonstrate the applicability of our results for systems with periodic forcing in the slow equation, in particular for a class of Liénard equations. Finally, we consider a toy model used to study tipping phenomena in climate systems with periodic forcing in the fast equation, which violates the conditions of our main results, in order to demonstrate the applicability of classical (two time-scale) theory for problems of this kind.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"21 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geometric Blow-Up for Folded Limit Cycle Manifolds in Three Time-Scale Systems\",\"authors\":\"S. Jelbart, C. Kuehn, S.-V. Kuntz\",\"doi\":\"10.1007/s00332-023-09987-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Geometric singular perturbation theory</i> provides a powerful mathematical framework for the analysis of ‘stationary’ multiple time-scale systems which possess a <i>critical manifold</i>, i.e. a smooth manifold of steady states for the limiting fast subsystem, particularly when combined with a method of desingularisation known as <i>blow-up</i>. The theory for ‘oscillatory’ multiple time-scale systems which possess a limit cycle manifold instead of (or in addition to) a critical manifold is less developed, particularly in the non-normally hyperbolic regime. We use the blow-up method to analyse the global oscillatory transition near a regular folded limit cycle manifold in a class of three time-scale ‘semi-oscillatory’ systems with two small parameters. The systems considered behave like oscillatory systems as the smallest perturbation parameter tends to zero, and stationary systems as both perturbation parameters tend to zero. The additional time-scale structure is crucial for the applicability of the blow-up method, which cannot be applied directly to the two time-scale oscillatory counterpart of the problem. Our methods allow us to describe the asymptotics and strong contractivity of all solutions which traverse a neighbourhood of the global singularity. Our main results cover a range of different cases with respect to the relative time-scale of the angular dynamics and the parameter drift. We demonstrate the applicability of our results for systems with periodic forcing in the slow equation, in particular for a class of Liénard equations. Finally, we consider a toy model used to study tipping phenomena in climate systems with periodic forcing in the fast equation, which violates the conditions of our main results, in order to demonstrate the applicability of classical (two time-scale) theory for problems of this kind.</p>\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-023-09987-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-09987-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Geometric Blow-Up for Folded Limit Cycle Manifolds in Three Time-Scale Systems
Geometric singular perturbation theory provides a powerful mathematical framework for the analysis of ‘stationary’ multiple time-scale systems which possess a critical manifold, i.e. a smooth manifold of steady states for the limiting fast subsystem, particularly when combined with a method of desingularisation known as blow-up. The theory for ‘oscillatory’ multiple time-scale systems which possess a limit cycle manifold instead of (or in addition to) a critical manifold is less developed, particularly in the non-normally hyperbolic regime. We use the blow-up method to analyse the global oscillatory transition near a regular folded limit cycle manifold in a class of three time-scale ‘semi-oscillatory’ systems with two small parameters. The systems considered behave like oscillatory systems as the smallest perturbation parameter tends to zero, and stationary systems as both perturbation parameters tend to zero. The additional time-scale structure is crucial for the applicability of the blow-up method, which cannot be applied directly to the two time-scale oscillatory counterpart of the problem. Our methods allow us to describe the asymptotics and strong contractivity of all solutions which traverse a neighbourhood of the global singularity. Our main results cover a range of different cases with respect to the relative time-scale of the angular dynamics and the parameter drift. We demonstrate the applicability of our results for systems with periodic forcing in the slow equation, in particular for a class of Liénard equations. Finally, we consider a toy model used to study tipping phenomena in climate systems with periodic forcing in the fast equation, which violates the conditions of our main results, in order to demonstrate the applicability of classical (two time-scale) theory for problems of this kind.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.