具有泊松尖峰机制的漏积分-火神经元全连接网络的振荡

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Grégory Dumont, Jacques Henry, Carmen Oana Tarniceriu
{"title":"具有泊松尖峰机制的漏积分-火神经元全连接网络的振荡","authors":"Grégory Dumont, Jacques Henry, Carmen Oana Tarniceriu","doi":"10.1007/s00332-023-09995-x","DOIUrl":null,"url":null,"abstract":"<p>Understanding the mechanisms that lead to oscillatory activity in the brain is an ongoing challenge in computational neuroscience. Here, we address this issue by considering a network of excitatory neurons with Poisson spiking mechanism. In the mean-field formalism, the network’s dynamics can be successfully rendered by a nonlinear dynamical system. The stationary state of the system is computed and a perturbation analysis is performed to obtain an analytical characterization for the occurrence of instabilities. Taking into account two parameters of the neural network, namely synaptic coupling and synaptic delay, we obtain numerically the bifurcation line separating the non-oscillatory from the oscillatory regime. Moreover, our approach can be adapted to incorporate multiple interacting populations.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oscillations in a Fully Connected Network of Leaky Integrate-and-Fire Neurons with a Poisson Spiking Mechanism\",\"authors\":\"Grégory Dumont, Jacques Henry, Carmen Oana Tarniceriu\",\"doi\":\"10.1007/s00332-023-09995-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the mechanisms that lead to oscillatory activity in the brain is an ongoing challenge in computational neuroscience. Here, we address this issue by considering a network of excitatory neurons with Poisson spiking mechanism. In the mean-field formalism, the network’s dynamics can be successfully rendered by a nonlinear dynamical system. The stationary state of the system is computed and a perturbation analysis is performed to obtain an analytical characterization for the occurrence of instabilities. Taking into account two parameters of the neural network, namely synaptic coupling and synaptic delay, we obtain numerically the bifurcation line separating the non-oscillatory from the oscillatory regime. Moreover, our approach can be adapted to incorporate multiple interacting populations.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-023-09995-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-023-09995-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

理解导致大脑振荡活动的机制是计算神经科学的一个持续挑战。在这里,我们通过考虑具有泊松尖峰机制的兴奋性神经元网络来解决这个问题。在平均场形式中,网络的动力学可以用非线性动力系统成功地表示。计算了系统的平稳状态,并进行了扰动分析,以获得不稳定发生的解析表征。考虑神经网络的两个参数,即突触耦合和突触延迟,我们用数值方法得到了非振荡区与振荡区之间的分岔线。此外,我们的方法可以适应多个相互作用的群体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oscillations in a Fully Connected Network of Leaky Integrate-and-Fire Neurons with a Poisson Spiking Mechanism

Oscillations in a Fully Connected Network of Leaky Integrate-and-Fire Neurons with a Poisson Spiking Mechanism

Understanding the mechanisms that lead to oscillatory activity in the brain is an ongoing challenge in computational neuroscience. Here, we address this issue by considering a network of excitatory neurons with Poisson spiking mechanism. In the mean-field formalism, the network’s dynamics can be successfully rendered by a nonlinear dynamical system. The stationary state of the system is computed and a perturbation analysis is performed to obtain an analytical characterization for the occurrence of instabilities. Taking into account two parameters of the neural network, namely synaptic coupling and synaptic delay, we obtain numerically the bifurcation line separating the non-oscillatory from the oscillatory regime. Moreover, our approach can be adapted to incorporate multiple interacting populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信