具有Marcinkiewicz数据的非线性抛物型问题解的渐近性质

IF 1.1 3区 数学 Q1 MATHEMATICS
Lucio Boccardo, Luigi Orsina, Maria Michaela Porzio
{"title":"具有Marcinkiewicz数据的非线性抛物型问题解的渐近性质","authors":"Lucio Boccardo, Luigi Orsina, Maria Michaela Porzio","doi":"10.1007/s00028-023-00929-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove the asymptotic behavior, as <i>t</i> tends to zero, of solutions of nonlinear parabolic equations with initial data belonging to Marcinkiewicz spaces. Namely, that if the initial datum <span>\\(u_{0}\\)</span> belongs to <span>\\(M^{m}(\\Omega )\\)</span>, then </p><span>$$\\begin{aligned} \\Vert u(t)\\Vert _{\\scriptstyle L^{r}(\\Omega )}^{*} \\le {\\mathcal {C}}\\,\\frac{\\Vert u_{0}\\Vert _{\\scriptstyle L^{m}(\\Omega )}^{*}}{t^{\\frac{N}{2}\\left( \\frac{1}{m} - \\frac{1}{r}\\right) }}, \\qquad \\forall \\,t &gt; 0, \\end{aligned}$$</span><p>thus extending to Marcinkiewicz spaces the results which hold for data in Lebesgue spaces.\n</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of solutions for nonlinear parabolic problems with Marcinkiewicz data\",\"authors\":\"Lucio Boccardo, Luigi Orsina, Maria Michaela Porzio\",\"doi\":\"10.1007/s00028-023-00929-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we prove the asymptotic behavior, as <i>t</i> tends to zero, of solutions of nonlinear parabolic equations with initial data belonging to Marcinkiewicz spaces. Namely, that if the initial datum <span>\\\\(u_{0}\\\\)</span> belongs to <span>\\\\(M^{m}(\\\\Omega )\\\\)</span>, then </p><span>$$\\\\begin{aligned} \\\\Vert u(t)\\\\Vert _{\\\\scriptstyle L^{r}(\\\\Omega )}^{*} \\\\le {\\\\mathcal {C}}\\\\,\\\\frac{\\\\Vert u_{0}\\\\Vert _{\\\\scriptstyle L^{m}(\\\\Omega )}^{*}}{t^{\\\\frac{N}{2}\\\\left( \\\\frac{1}{m} - \\\\frac{1}{r}\\\\right) }}, \\\\qquad \\\\forall \\\\,t &gt; 0, \\\\end{aligned}$$</span><p>thus extending to Marcinkiewicz spaces the results which hold for data in Lebesgue spaces.\\n</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00929-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00929-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了一类初始数据属于Marcinkiewicz空间的非线性抛物型方程解在t趋于零时的渐近性。也就是说,如果初始数据\(u_{0}\)属于\(M^{m}(\Omega )\),那么$$\begin{aligned} \Vert u(t)\Vert _{\scriptstyle L^{r}(\Omega )}^{*} \le {\mathcal {C}}\,\frac{\Vert u_{0}\Vert _{\scriptstyle L^{m}(\Omega )}^{*}}{t^{\frac{N}{2}\left( \frac{1}{m} - \frac{1}{r}\right) }}, \qquad \forall \,t > 0, \end{aligned}$$因此延伸到Marcinkiewicz空间的结果持有的数据在勒贝格空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior of solutions for nonlinear parabolic problems with Marcinkiewicz data

In this paper we prove the asymptotic behavior, as t tends to zero, of solutions of nonlinear parabolic equations with initial data belonging to Marcinkiewicz spaces. Namely, that if the initial datum \(u_{0}\) belongs to \(M^{m}(\Omega )\), then

$$\begin{aligned} \Vert u(t)\Vert _{\scriptstyle L^{r}(\Omega )}^{*} \le {\mathcal {C}}\,\frac{\Vert u_{0}\Vert _{\scriptstyle L^{m}(\Omega )}^{*}}{t^{\frac{N}{2}\left( \frac{1}{m} - \frac{1}{r}\right) }}, \qquad \forall \,t > 0, \end{aligned}$$

thus extending to Marcinkiewicz spaces the results which hold for data in Lebesgue spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信