Lucio Boccardo, Luigi Orsina, Maria Michaela Porzio
{"title":"具有Marcinkiewicz数据的非线性抛物型问题解的渐近性质","authors":"Lucio Boccardo, Luigi Orsina, Maria Michaela Porzio","doi":"10.1007/s00028-023-00929-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove the asymptotic behavior, as <i>t</i> tends to zero, of solutions of nonlinear parabolic equations with initial data belonging to Marcinkiewicz spaces. Namely, that if the initial datum <span>\\(u_{0}\\)</span> belongs to <span>\\(M^{m}(\\Omega )\\)</span>, then </p><span>$$\\begin{aligned} \\Vert u(t)\\Vert _{\\scriptstyle L^{r}(\\Omega )}^{*} \\le {\\mathcal {C}}\\,\\frac{\\Vert u_{0}\\Vert _{\\scriptstyle L^{m}(\\Omega )}^{*}}{t^{\\frac{N}{2}\\left( \\frac{1}{m} - \\frac{1}{r}\\right) }}, \\qquad \\forall \\,t > 0, \\end{aligned}$$</span><p>thus extending to Marcinkiewicz spaces the results which hold for data in Lebesgue spaces.\n</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of solutions for nonlinear parabolic problems with Marcinkiewicz data\",\"authors\":\"Lucio Boccardo, Luigi Orsina, Maria Michaela Porzio\",\"doi\":\"10.1007/s00028-023-00929-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we prove the asymptotic behavior, as <i>t</i> tends to zero, of solutions of nonlinear parabolic equations with initial data belonging to Marcinkiewicz spaces. Namely, that if the initial datum <span>\\\\(u_{0}\\\\)</span> belongs to <span>\\\\(M^{m}(\\\\Omega )\\\\)</span>, then </p><span>$$\\\\begin{aligned} \\\\Vert u(t)\\\\Vert _{\\\\scriptstyle L^{r}(\\\\Omega )}^{*} \\\\le {\\\\mathcal {C}}\\\\,\\\\frac{\\\\Vert u_{0}\\\\Vert _{\\\\scriptstyle L^{m}(\\\\Omega )}^{*}}{t^{\\\\frac{N}{2}\\\\left( \\\\frac{1}{m} - \\\\frac{1}{r}\\\\right) }}, \\\\qquad \\\\forall \\\\,t > 0, \\\\end{aligned}$$</span><p>thus extending to Marcinkiewicz spaces the results which hold for data in Lebesgue spaces.\\n</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00929-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00929-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic behavior of solutions for nonlinear parabolic problems with Marcinkiewicz data
In this paper we prove the asymptotic behavior, as t tends to zero, of solutions of nonlinear parabolic equations with initial data belonging to Marcinkiewicz spaces. Namely, that if the initial datum \(u_{0}\) belongs to \(M^{m}(\Omega )\), then
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators