{"title":"四分之一平面上一类伪双曲方程的边值问题","authors":"L. N. Bondar’, G. V. Demidenko","doi":"10.1134/s1055134422010023","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider mixed boundary value problems for one pseudohyperbolic equation in a\nquarter plane. We assume that the boundary value problems satisfy the Lopatinskiĭ\ncondition. We prove theorems on unique solvability in anisotropic Sobolev spaces with exponential\nweight and establish some estimates for the solutions.\n</p>","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":"63 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boundary Value Problems for One Pseudohyperbolic Equation in a Quarter-Plane\",\"authors\":\"L. N. Bondar’, G. V. Demidenko\",\"doi\":\"10.1134/s1055134422010023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider mixed boundary value problems for one pseudohyperbolic equation in a\\nquarter plane. We assume that the boundary value problems satisfy the Lopatinskiĭ\\ncondition. We prove theorems on unique solvability in anisotropic Sobolev spaces with exponential\\nweight and establish some estimates for the solutions.\\n</p>\",\"PeriodicalId\":39997,\"journal\":{\"name\":\"Siberian Advances in Mathematics\",\"volume\":\"63 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Advances in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1055134422010023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1055134422010023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Boundary Value Problems for One Pseudohyperbolic Equation in a Quarter-Plane
Abstract
We consider mixed boundary value problems for one pseudohyperbolic equation in a
quarter plane. We assume that the boundary value problems satisfy the Lopatinskiĭ
condition. We prove theorems on unique solvability in anisotropic Sobolev spaces with exponential
weight and establish some estimates for the solutions.
期刊介绍:
Siberian Advances in Mathematics is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.