二阶Cesáro均值法估计可微函数类近似误差中的一个尖锐常数

O. G. Rovenskaya
{"title":"二阶Cesáro均值法估计可微函数类近似误差中的一个尖锐常数","authors":"O. G. Rovenskaya","doi":"10.1134/s1055134422030051","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider the problem of finding a sharp constant in the approximation of continuous\nfunctions by linear methods. The best constant is obtained for the approximation\nby the second-order Cesàro means of classes of Lipschitz continuous periodic functions.\n</p>","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sharp Constant in the Estimation of the Error of the Approximation of Classes of Differentiable Functions by the Second-Order Cesáro Means\",\"authors\":\"O. G. Rovenskaya\",\"doi\":\"10.1134/s1055134422030051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider the problem of finding a sharp constant in the approximation of continuous\\nfunctions by linear methods. The best constant is obtained for the approximation\\nby the second-order Cesàro means of classes of Lipschitz continuous periodic functions.\\n</p>\",\"PeriodicalId\":39997,\"journal\":{\"name\":\"Siberian Advances in Mathematics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Advances in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1055134422030051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1055134422030051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑了用线性方法逼近连续函数时求尖锐常数的问题。利用Lipschitz连续周期函数类的二阶Cesàro均值,得到了逼近的最佳常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sharp Constant in the Estimation of the Error of the Approximation of Classes of Differentiable Functions by the Second-Order Cesáro Means

Abstract

We consider the problem of finding a sharp constant in the approximation of continuous functions by linear methods. The best constant is obtained for the approximation by the second-order Cesàro means of classes of Lipschitz continuous periodic functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siberian Advances in Mathematics
Siberian Advances in Mathematics Mathematics-Mathematics (all)
CiteScore
0.70
自引率
0.00%
发文量
17
期刊介绍: Siberian Advances in Mathematics  is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信