“从$$A_1$$到$$A_\infty $$:某些极大算子的新混合不等式”的勘误表

IF 1 3区 数学 Q1 MATHEMATICS
Fabio Berra
{"title":"“从$$A_1$$到$$A_\\infty $$:某些极大算子的新混合不等式”的勘误表","authors":"Fabio Berra","doi":"10.1007/s11118-023-10088-3","DOIUrl":null,"url":null,"abstract":"<p>We devote this note to correct an estimate concerning mixed inequalities for the generalized maximal function <span>\\(M_\\Phi \\)</span> given in Berra (Potential Anal. <b>57</b>(1), 1–27, 2022), when certain properties of the associated Young function <span>\\(\\Phi \\)</span> are assumed. Although the obtained estimates turn out to be slightly different, they are good extensions of mixed inequalities for the classical Hardy-Littlewood maximal functions <span>\\(M_r\\)</span>, with <span>\\(r\\ge 1\\)</span>. They also allow us to obtain mixed estimates for the generalized fractional maximal operator <span>\\(M_{\\gamma ,\\Phi }\\)</span>, when <span>\\(0&lt;\\gamma &lt;n\\)</span> and <span>\\(\\Phi \\)</span> is an <span>\\(L\\log L\\)</span> type function.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"120 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrigendum to “From $$A_1$$ to $$A_\\\\infty $$ : New Mixed Inequalities for Certain Maximal Operators”\",\"authors\":\"Fabio Berra\",\"doi\":\"10.1007/s11118-023-10088-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We devote this note to correct an estimate concerning mixed inequalities for the generalized maximal function <span>\\\\(M_\\\\Phi \\\\)</span> given in Berra (Potential Anal. <b>57</b>(1), 1–27, 2022), when certain properties of the associated Young function <span>\\\\(\\\\Phi \\\\)</span> are assumed. Although the obtained estimates turn out to be slightly different, they are good extensions of mixed inequalities for the classical Hardy-Littlewood maximal functions <span>\\\\(M_r\\\\)</span>, with <span>\\\\(r\\\\ge 1\\\\)</span>. They also allow us to obtain mixed estimates for the generalized fractional maximal operator <span>\\\\(M_{\\\\gamma ,\\\\Phi }\\\\)</span>, when <span>\\\\(0&lt;\\\\gamma &lt;n\\\\)</span> and <span>\\\\(\\\\Phi \\\\)</span> is an <span>\\\\(L\\\\log L\\\\)</span> type function.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-023-10088-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-023-10088-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

当相关Young函数\(\Phi \)的某些性质被假设时,我们将此注释用于修正Berra (Potential Anal. 57(1), 1 - 27,2022)中给出的关于广义极大函数\(M_\Phi \)的混合不等式的估计。虽然得到的估计结果略有不同,但它们是经典Hardy-Littlewood极大函数\(M_r\)的混合不等式的良好扩展,其中\(r\ge 1\)。它们还允许我们获得广义分数极大算子\(M_{\gamma ,\Phi }\)的混合估计,当\(0<\gamma <n\)和\(\Phi \)是\(L\log L\)类型函数时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrigendum to “From $$A_1$$ to $$A_\infty $$ : New Mixed Inequalities for Certain Maximal Operators”

We devote this note to correct an estimate concerning mixed inequalities for the generalized maximal function \(M_\Phi \) given in Berra (Potential Anal. 57(1), 1–27, 2022), when certain properties of the associated Young function \(\Phi \) are assumed. Although the obtained estimates turn out to be slightly different, they are good extensions of mixed inequalities for the classical Hardy-Littlewood maximal functions \(M_r\), with \(r\ge 1\). They also allow us to obtain mixed estimates for the generalized fractional maximal operator \(M_{\gamma ,\Phi }\), when \(0<\gamma <n\) and \(\Phi \) is an \(L\log L\) type function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信