{"title":"带反射的分数阶拉普拉斯式","authors":"Krzysztof Bogdan, Markus Kunze","doi":"10.1007/s11118-023-10111-7","DOIUrl":null,"url":null,"abstract":"<p>Motivated by the notion of isotropic <span>\\(\\alpha \\)</span>-stable Lévy processes confined, by reflections, to a bounded open Lipschitz set <span>\\(D\\subset \\mathbb {R}^d\\)</span>, we study some related analytical objects. Thus, we construct the corresponding transition semigroup, identify its generator and prove exponential speed of convergence of the semigroup to a unique stationary distribution for large time.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Fractional Laplacian with Reflections\",\"authors\":\"Krzysztof Bogdan, Markus Kunze\",\"doi\":\"10.1007/s11118-023-10111-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by the notion of isotropic <span>\\\\(\\\\alpha \\\\)</span>-stable Lévy processes confined, by reflections, to a bounded open Lipschitz set <span>\\\\(D\\\\subset \\\\mathbb {R}^d\\\\)</span>, we study some related analytical objects. Thus, we construct the corresponding transition semigroup, identify its generator and prove exponential speed of convergence of the semigroup to a unique stationary distribution for large time.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-023-10111-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-023-10111-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Motivated by the notion of isotropic \(\alpha \)-stable Lévy processes confined, by reflections, to a bounded open Lipschitz set \(D\subset \mathbb {R}^d\), we study some related analytical objects. Thus, we construct the corresponding transition semigroup, identify its generator and prove exponential speed of convergence of the semigroup to a unique stationary distribution for large time.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.