{"title":"成对匹配在实验设计中对发生率结果的作用","authors":"Adam Kapelner, Abba M. Krieger, David Azriel","doi":"10.1111/anzs.12403","DOIUrl":null,"url":null,"abstract":"We consider the problem of evaluating designs for a two-arm randomised experiment with an incidence (binary) outcome under a non-parametric general response model. Our two main results are that the a priori pair matching design is (1) the optimal design as measured by mean squared error among all block designs which includes complete randomisation. And (2), this pair-matching design is minimax, that is, it provides the lowest mean squared error under an adversarial response model. Theoretical results are supported by simulations and clinical trial data where we demonstrate the superior performance of pairwise matching designs under realistic conditions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The role of pairwise matching in experimental design for an incidence outcome\",\"authors\":\"Adam Kapelner, Abba M. Krieger, David Azriel\",\"doi\":\"10.1111/anzs.12403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of evaluating designs for a two-arm randomised experiment with an incidence (binary) outcome under a non-parametric general response model. Our two main results are that the a priori pair matching design is (1) the optimal design as measured by mean squared error among all block designs which includes complete randomisation. And (2), this pair-matching design is minimax, that is, it provides the lowest mean squared error under an adversarial response model. Theoretical results are supported by simulations and clinical trial data where we demonstrate the superior performance of pairwise matching designs under realistic conditions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/anzs.12403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/anzs.12403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The role of pairwise matching in experimental design for an incidence outcome
We consider the problem of evaluating designs for a two-arm randomised experiment with an incidence (binary) outcome under a non-parametric general response model. Our two main results are that the a priori pair matching design is (1) the optimal design as measured by mean squared error among all block designs which includes complete randomisation. And (2), this pair-matching design is minimax, that is, it provides the lowest mean squared error under an adversarial response model. Theoretical results are supported by simulations and clinical trial data where we demonstrate the superior performance of pairwise matching designs under realistic conditions.