Marcus Vinicius Brito da Silva, Jonatas Adilson Marques, Luciano Paschoal Gaspary, Lisandro Zambenedetti Granville
{"title":"在可编程IXP网络中使用动态阈值识别大象流","authors":"Marcus Vinicius Brito da Silva, Jonatas Adilson Marques, Luciano Paschoal Gaspary, Lisandro Zambenedetti Granville","doi":"10.1186/s13174-020-00131-6","DOIUrl":null,"url":null,"abstract":"Internet eXchange Points (IXPs) are Internet infrastructures composed of high-performance networks that allow multiple autonomous systems to exchange traffic. Given the challenges of managing the flows that cross an IXP, identifying elephant flows may help improve the quality of services provided to its participants. In this context, we leverage the new flexibility and resources of programmable data planes to identify elephant flows in IXP networks adaptively via the dynamic adjustment of thresholds. Our mechanism uses the information reported by the data plane to monitor network utilization in the control plane, calculating new thresholds based on previous flow sizes and durations percentiles and configuring them back into switches to support the local classification of flows. Thus, the thresholds are updated to make the identification process better aligned with the network behavior. The experimental results show that it is possible to identify and react to elephant flows quickly, less than 0.4ms, and efficiently, with only 98.4KB of data inserted into the network by the mechanism. In addition, the threshold updating mechanism achieved accuracy of up to 90% in our evaluation scenarios.","PeriodicalId":46467,"journal":{"name":"Journal of Internet Services and Applications","volume":"23 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identifying elephant flows using dynamic thresholds in programmable IXP networks\",\"authors\":\"Marcus Vinicius Brito da Silva, Jonatas Adilson Marques, Luciano Paschoal Gaspary, Lisandro Zambenedetti Granville\",\"doi\":\"10.1186/s13174-020-00131-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet eXchange Points (IXPs) are Internet infrastructures composed of high-performance networks that allow multiple autonomous systems to exchange traffic. Given the challenges of managing the flows that cross an IXP, identifying elephant flows may help improve the quality of services provided to its participants. In this context, we leverage the new flexibility and resources of programmable data planes to identify elephant flows in IXP networks adaptively via the dynamic adjustment of thresholds. Our mechanism uses the information reported by the data plane to monitor network utilization in the control plane, calculating new thresholds based on previous flow sizes and durations percentiles and configuring them back into switches to support the local classification of flows. Thus, the thresholds are updated to make the identification process better aligned with the network behavior. The experimental results show that it is possible to identify and react to elephant flows quickly, less than 0.4ms, and efficiently, with only 98.4KB of data inserted into the network by the mechanism. In addition, the threshold updating mechanism achieved accuracy of up to 90% in our evaluation scenarios.\",\"PeriodicalId\":46467,\"journal\":{\"name\":\"Journal of Internet Services and Applications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Services and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13174-020-00131-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13174-020-00131-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Identifying elephant flows using dynamic thresholds in programmable IXP networks
Internet eXchange Points (IXPs) are Internet infrastructures composed of high-performance networks that allow multiple autonomous systems to exchange traffic. Given the challenges of managing the flows that cross an IXP, identifying elephant flows may help improve the quality of services provided to its participants. In this context, we leverage the new flexibility and resources of programmable data planes to identify elephant flows in IXP networks adaptively via the dynamic adjustment of thresholds. Our mechanism uses the information reported by the data plane to monitor network utilization in the control plane, calculating new thresholds based on previous flow sizes and durations percentiles and configuring them back into switches to support the local classification of flows. Thus, the thresholds are updated to make the identification process better aligned with the network behavior. The experimental results show that it is possible to identify and react to elephant flows quickly, less than 0.4ms, and efficiently, with only 98.4KB of data inserted into the network by the mechanism. In addition, the threshold updating mechanism achieved accuracy of up to 90% in our evaluation scenarios.