当它计数——基于GLT结构的基本因子模型的计量经济学识别

IF 1.1 Q3 ECONOMICS
Sylvia Frühwirth-Schnatter, Darjus Hosszejni, Hedibert Freitas Lopes
{"title":"当它计数——基于GLT结构的基本因子模型的计量经济学识别","authors":"Sylvia Frühwirth-Schnatter, Darjus Hosszejni, Hedibert Freitas Lopes","doi":"10.3390/econometrics11040026","DOIUrl":null,"url":null,"abstract":"Despite the popularity of factor models with simple loading matrices, little attention has been given to formally address the identifiability of these models beyond standard rotation-based identification such as the positive lower triangular (PLT) constraint. To fill this gap, we review the advantages of variance identification in simple factor analysis and introduce the generalized lower triangular (GLT) structures. We show that the GLT assumption is an improvement over PLT without compromise: GLT is also unique but, unlike PLT, a non-restrictive assumption. Furthermore, we provide a simple counting rule for variance identification under GLT structures, and we demonstrate that within this model class, the unknown number of common factors can be recovered in an exploratory factor analysis. Our methodology is illustrated for simulated data in the context of post-processing posterior draws in sparse Bayesian factor analysis.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When It Counts—Econometric Identification of the Basic Factor Model Based on GLT Structures\",\"authors\":\"Sylvia Frühwirth-Schnatter, Darjus Hosszejni, Hedibert Freitas Lopes\",\"doi\":\"10.3390/econometrics11040026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the popularity of factor models with simple loading matrices, little attention has been given to formally address the identifiability of these models beyond standard rotation-based identification such as the positive lower triangular (PLT) constraint. To fill this gap, we review the advantages of variance identification in simple factor analysis and introduce the generalized lower triangular (GLT) structures. We show that the GLT assumption is an improvement over PLT without compromise: GLT is also unique but, unlike PLT, a non-restrictive assumption. Furthermore, we provide a simple counting rule for variance identification under GLT structures, and we demonstrate that within this model class, the unknown number of common factors can be recovered in an exploratory factor analysis. Our methodology is illustrated for simulated data in the context of post-processing posterior draws in sparse Bayesian factor analysis.\",\"PeriodicalId\":11499,\"journal\":{\"name\":\"Econometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/econometrics11040026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics11040026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

尽管具有简单加载矩阵的因子模型很受欢迎,但除了标准的基于旋转的识别(如正下三角(PLT)约束)之外,很少有人注意正式解决这些模型的可识别性。为了填补这一空白,我们回顾了方差识别在简单因子分析中的优势,并引入了广义下三角结构(GLT)。我们证明GLT假设是对PLT的改进而不妥协:GLT也是唯一的,但与PLT不同,GLT是一个非限制性假设。此外,我们为GLT结构下的方差识别提供了一个简单的计数规则,并证明在该模型类中,可以通过探索性因子分析恢复未知数量的公共因子。我们的方法说明了在稀疏贝叶斯因子分析的后处理后验图背景下的模拟数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When It Counts—Econometric Identification of the Basic Factor Model Based on GLT Structures
Despite the popularity of factor models with simple loading matrices, little attention has been given to formally address the identifiability of these models beyond standard rotation-based identification such as the positive lower triangular (PLT) constraint. To fill this gap, we review the advantages of variance identification in simple factor analysis and introduce the generalized lower triangular (GLT) structures. We show that the GLT assumption is an improvement over PLT without compromise: GLT is also unique but, unlike PLT, a non-restrictive assumption. Furthermore, we provide a simple counting rule for variance identification under GLT structures, and we demonstrate that within this model class, the unknown number of common factors can be recovered in an exploratory factor analysis. Our methodology is illustrated for simulated data in the context of post-processing posterior draws in sparse Bayesian factor analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信