具有跳跃、可微性和对偶原理的路径相关倒向随机Volterra积分方程

IF 1 2区 数学 Q3 STATISTICS & PROBABILITY
Ludger Overbeck, Jasmin A. L. Röder
{"title":"具有跳跃、可微性和对偶原理的路径相关倒向随机Volterra积分方程","authors":"Ludger Overbeck, Jasmin A. L. Röder","doi":"10.1186/s41546-018-0030-2","DOIUrl":null,"url":null,"abstract":"We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations (BSVIEs) with jumps, where path-dependence means the dependence of the free term and generator of a path of a càdlàg process. Furthermore, we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation (FSVIE) with jumps and a linear path-dependent BSVIE with jumps. As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":"275 1","pages":"1-37"},"PeriodicalIF":1.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path-dependent backward stochastic Volterra integral equations with jumps, differentiability and duality principle\",\"authors\":\"Ludger Overbeck, Jasmin A. L. Röder\",\"doi\":\"10.1186/s41546-018-0030-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations (BSVIEs) with jumps, where path-dependence means the dependence of the free term and generator of a path of a càdlàg process. Furthermore, we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation (FSVIE) with jumps and a linear path-dependent BSVIE with jumps. As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps.\",\"PeriodicalId\":42330,\"journal\":{\"name\":\"Probability Uncertainty and Quantitative Risk\",\"volume\":\"275 1\",\"pages\":\"1-37\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Uncertainty and Quantitative Risk\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s41546-018-0030-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Uncertainty and Quantitative Risk","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s41546-018-0030-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有跳变的路径相关倒向随机Volterra积分方程(BSVIEs)解的存在唯一性,其中路径相关是指càdlàg过程的路径自由项与生成项的相关性。进一步证明了该解的路径可微性,并建立了具有跳跃的线性路径相关正随机Volterra积分方程(FSVIE)与具有跳跃的线性路径相关BSVIE之间的对偶原理。利用对偶原理,得到了一个比较定理,并导出了一类基于具有跳跃的路径相关bsvie的动态相干风险测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path-dependent backward stochastic Volterra integral equations with jumps, differentiability and duality principle
We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations (BSVIEs) with jumps, where path-dependence means the dependence of the free term and generator of a path of a càdlàg process. Furthermore, we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation (FSVIE) with jumps and a linear path-dependent BSVIE with jumps. As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
13.30%
发文量
29
审稿时长
12 weeks
期刊介绍: Probability, Uncertainty and Quantitative Risk (PUQR) is a quarterly academic journal under the supervision of the Ministry of Education of the People's Republic of China and hosted by Shandong University, which is open to the public at home and abroad (ISSN 2095-9672; CN 37-1505/O1). Probability, Uncertainty and Quantitative Risk (PUQR) mainly reports on the major developments in modern probability theory, covering stochastic analysis and statistics, stochastic processes, dynamical analysis and control theory, and their applications in the fields of finance, economics, biology, and computer science. The journal is currently indexed in ESCI, Scopus, Mathematical Reviews, zbMATH Open and other databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信